Environmental Images for Dutch industry in 2030

Final report

Ministry of VROM

26 March 2007

Arthur D Little

Arthur D. Little Benelux N.V. Willemswerf - Boompjes 40 3011 XB Rotterdam P.O.Box 540 3000 AM Rotterdam The Netherlands

 Telephone
 31-(0)10-201.8811

 Telefax
 31-(0)10-233.1613

 adlittle.rotterdam@adlittle.com
 Reference:

 N1083-003
 N1083-003

1	Introduction
2	Environmental performance levels for 2030
3	Cost comparison of existing solutions
4	General conclusions & next steps
А	Appendices

1

Consultation with industry indicated the need for more clarity on long-term perspectives for environmental requirements, possible solutions and costs

Context for this study

- The Netherlands (NL) has a high population density and an extensive industrial sector resulting in environmental pressure higher than in many other European countries. Consequently, the emission performance of Dutch stakeholders is and will have to remain above average compared to other countries
- The growing influence of EU on national environmental policy provides Dutch authorities the opportunity to play a new role: building partnerships with industry to foster the development of cost efficient environmental innovations
- Moreover, recent consultation between VROM and Dutch industry indicated the need for:
 - More transparency and clarity on long-term perspectives for expected performance levels
 - An indication of possible alternative solutions and costs associated with meeting such future levels
 - Support in developing and implementing environmental innovation programs for specific sectors or companies, in order to reduce these anticipated costs
- If properly anticipated and planned, environmental innovation can be leveraged by Dutch players as an opportunity to reduce costs associated with wasted resources or to export know-how developed in the Netherlands

High-level assessment of future environmental requirements and associated costs is a starting point for the development of joint innovation agendas

Purpose of this study

- Provide a long-term perspective on possible future environmental performance levels, based on 3 different plausible "Images" of the future evaluated by a panel of national and international experts
- Compare the main existing technology solutions in terms of cost efficiency and emission savings potential
- Provide a high-level reference for development of joint environmental innovation agendas between Dutch industry and government, with particular focus on achieving the necessary emission reductions at the lowest possible costs
- Identify what main actions can be taken by both industry and government to enable the development of the most cost efficient solutions

Note: In practice, however, decisions by industry and policy makers for investing in existing or innovative technology solutions will not only depend on cost efficiency. Other environmental, social, and macro-economic considerations also play an important role (e.g. national dependency on gas, life cycle environmental impact, impact on industry competitiveness). For all these reasons, less cost-efficient technologies may nevertheless constitute valid options. The latter discussions are, however, beyond the scope of this study.

1

This study can initiate discussions on innovation agendas, but is no basis for stand-alone decisions, as not all relevant analytical parts are covered

Conceptual overview of sco	ope of this study		
Regions Netherlands	Rest of Europe	\	
Sectors			
Industry Transport	Agriculture Built environment		Examples of
Existing technologies	Emerging technologies		factors that influence decisions on
Themes / Pollutants ¹⁾ Climate Air Water	Waste REACH Bio- diversity		innovation investments
Investment considerations Cost to industry Cost to rest	t of society		In scope

1) Shaded area is indicative only, based on % of national costs for the pollutants in-scope vs. the whole theme

Scope covers four environmental themes and focuses on pollutants with the most significant environmental impact and relevance to industry

Environmental themes	Pollutants <u>in-scope</u>	Pollutants out of scope	
Climate change	 CO₂ N₂0 - partly¹⁾ CH₄ - partly¹⁾ HCFC's - partly¹⁾ 		
Air quality	$ \begin{array}{c} \bullet & NO_{X} \\ \bullet & SO_{2} \end{array} \begin{array}{c} \bullet & PM \cdot partly^{1)} \\ \bullet & VOC's - partly^{1)} \\ \bullet & NH_{3} - partly^{1)} \end{array} $		 Selection criteria Relative environmental impact
Water quality ²⁾ (excl. marine water)	Nitrates (N)Phosphates (P)	 Mercury BOD/COD Pesticides Other Chemicals 	 in NL Relevance to Dutch industry in general (excl. agriculture)
Waste	Household / consumerCommercial	 Construction Green Hazardous Sludges 	potential
The scope o O	f this study covers emissions aris ther sources (e.g. transportation,	sing from <u>industrial operations in the</u> agriculture, housing) are out of sco	Netherlands. pe
 Pollutants only included in first Scope for water quality is artic Source: Expert interviews, Arthur 	st part of the study: evaluation of the per ficially limited to waste water treatment, ur D. Little analysis	rformance levels in 2030 since the focus of the study is on industry	and not on agriculture

The approach of this study includes quantification of possible future performance levels and evaluation of potential solutions

Three qualitative environmental scenarios for 2030, i.e. "Environmental Images 2030", give a long term perspective on emission reduction levels

Phase 1. Environmental performance levels in 2030

- To provide a long term perspective of the evolution of environmental performance in the Netherlands, three qualitative descriptions of environmental scenarios (called "Environmental Images 2030") were first developed. These are designed to give a range of plausible Images of the future for the environmental themes in scope
- These Images were designed in a "top-down" approach, on the basis of identified key drivers, i.e. external factors (beyond the control of Dutch industry and government) which have both a high impact on the environmental performance of the country, and a high level of uncertainty
- A panel of more than 30 national and international environmental experts were then interviewed and asked to verify these 3 Images and quantify their expectations of national emissions levels for a number of pollutants, under each Image for 2030. The results of all interviews were interpreted and aggregated by Arthur D. Little in such a way that "extreme" performance expectations (either very high or very low) were eliminated
- The 3 obtained "plausible" Images for 2030 are called Low Performance Image (LPI), Medium Performance Image (MPI) and High Performance Image (HPI)

1

For each of the three Environmental Images, the emission performance gap to be bridged by 2030 was calculated vs. a "business as usual" scenario

Phase 1. Environmental performance levels in 2030 (continued)

- For each major pollutant, a reference "business as usual" scenario for 2030 was defined, based on the continuation of current environmental standards and trends of demand for resources (i.e. no additional measures taken)
- By comparing this reference scenario with the 3 Images for 2030, the extent to which additional emission savings vs. "business as usual" can be expected was determined, for the country as a whole
- Since the scope of the present study is limited to industrial sources in the Netherlands, a simplifying assumption of "proportional burden sharing" was taken. This means that all emission source categories (e.g. industry & power, agriculture, housing, transportation) are assumed to achieve the same percentage reduction of their emissions. As this proportional sharing simplifies the complex political decisions of allocating reduction levels to the different source categories, this approach can be debated.
- A national scope was assumed for the calculations, meaning that imports/exports (e.g. of electricity), transboundary pollution and international trading of emission rights were not considered

The attractiveness of alternative technology solutions was evaluated in terms of both total emission savings potential and cost efficiency

Phase 2. Potential industrial solutions till 2030

Alternative technology solutions were compared for each pollutant studied, both in terms of total emission savings potential (i.e. to which extent could each technology contribute to the total national emission reduction), and in terms of cost efficiency (in Euro per ton of avoided pollutant)

The focus of the analysis was placed only on technologies which meet the following two criteria:

- They are already "*existing*", i.e. demonstrated at industrial or at least pilot scale (such as carbon capture & storage (CCS) for CO₂, or membrane reactors for waste water treatment),
- They can contribute to significant emission savings at the national level
- Emerging technologies were not included in the cost efficiency analysis because of the lack of reliable cost data for such "future" technologies. It is well recognized, however, that they could also bring a significant contribution to the mix of solutions by 2030, especially in case of disruptive innovation
- Finally, the total costs for Dutch industry to meet the expected 2030 levels under LPI and HPI were estimated, based on the assumption that the most cost-efficient existing solutions are applied, i.e. not considering other political and socio-economic factors
- Actions which could be taken by both industry and government to enable the rapid development of the most attractive solutions were also identified

For the assessment of technology solutions, Arthur D. Little heavily relied on reports published by Dutch knowledge institutions

Phase 2. Potential industrial solutions till 2030 (continued)

- For the climate change and air quality analysis, the costs of the industrial abatement methods are based on the 2006 report from ECN/MNP "Optiedocument energie en emissies 2010/2020"
- This study incorporates in its calculations the learning curve effects on the costs of abatement technologies up to 2020; and Arthur D. Little assumed no further cost reductions from 2020 to 2030. Learning curve effects are therefore probably somewhat underestimated
- For climate change and air quality, the significance of the industrial measures is again based on the ECN/MNP study, taking into account the differences in applied reference scenarios (since the 'business as usual' reference used in this study is different from the reference scenario used in the ECN/MNP study)
- The calculation of the national significance and costs of industrial abatement methods for waste and water quality are based on several different sources and Arthur D. Little analysis, mostly from SenterNovem and STOWA respectively
- All cost data of technology solutions are presented for "average" national situations; they may therefore be significantly different in specific local situations
- A list of the most important sources of information used in this study is provided in appendix 4

1

This study is intended to be used as a guide to public/private innovation agendas, and not as tool to support decisions on environmental target setting

How to use this report	Remarks
 To support development of joint environmental innovation agendas by Dutch industry and government To get an indication of three plausible environmental performance levels in 2030 and to use the most relevant one for strategic decision making in function of your objectives; High Performance Image could be useful for <i>early technology adopters</i> Medium Performance Image could be useful for <i>suppliers of technologies</i> Low Performance Image could be useful for <i>late technology adopters</i> To get a comparative cost efficiency based overview of alternative technologies already available to reduce future emissions Indicate the marginal costs of existing technologies, which can be used as benchmarks to evaluate the relative cost efficiency of emerging technologies 	 This study did not evaluate the relative costs of reducing emissions from industry vs. other source categories (e.g. transportation, agriculture, housing) In addition to cost considerations, other criteria like environmental, social and macro-economic factors, may play an decisive role in allocation of innovation investments. The latter considerations are beyond the scope of this study The study is limited to <i>existing</i> solutions that generate <i>significant</i> national impact on emission reduction and are relatively cost efficient (80/20 principle)

1	Introduction
2	Environmental performance levels for 2030
3	Cost comparison of existing solutions
4	General conclusions & next steps
А	Appendices

Identification of critical drivers of change for the environmental themes was used to develop the three different Images

Prioritization of external driving force			Comments	
high	 Labour cost (EU) Cost of Capital (EU) 	 Environmental commitment of Dutch public Demand for resources Effectiveness of innovation 	 Level of commitment to climate change Supply of oil and gas 	 Driving forces (drivers) are identified and prioritized by interviews and research on existing scenario analyses Key question for the identificatio of drivers is "What might cause a major obspace in alimete obspace)
Level of impact	 Scarcity of natural resources Household size & housing mix (age, type) 	 Acceptance of nuclear Internalisation of environmental cost in global trade Acceptance of closed animal agro-parks 	Level of EU harmonisation	 Inajor change in climate change air quality, water quality and was management?" Only the <u>high impact / high uncertainty</u> drivers are retained to develop the Images
low	Deregulation of power industry			 High impact / low uncertainty drivers are assumed part of the common future and not used any further The plausible endpoint alternatives of each key driver a
	low Key drivers (high	Degree of uncertainty impact and high uncertaint	high y)	integrated in the description of the three Images

Three plausible Environmental Images for 2030 were developed, using level of environmental performance as distinguishing factor

Environmer	ntal Images 2030		
Image	<u>High</u> Performance Image (HPI)	<u>Medium</u> Performance Image (MPI)	<u>Low</u> Performance Image (LPI)
Distinguishing factor	The HPI 2030 describes a plausible Image with a <u>high</u> environmental performance, e.g. relatively strong reduction of CO ₂ emissions	The MPI 2030 describes a plausible Image with a <u>medium</u> environmental performance, e.g. medium reduction of CO ₂ emissions	The LPI 2030 describes a plausible Image with a <u>low</u> environmental performance, e.g. relatively weak reduction of CO ₂ emissions
	A summary of the	e HPI and the LPI is provided in th	e following slides

2

The HPI describes a world with strong international commitment, decisiveness and actions aimed at improving the environment...

Key elements of HPI 2030

- Strong global commitment to climate change leads to development of efficient international climate change policies and CO₂ trading
- Low security of supply of oil and gas, due to continued tensions in Middle East and unreliable supply of gas from Russia, leading to high oil/gas prices, e.g. ~70 USD (2006) /barrel oil
- Further harmonization of the EU, leading to more stringent standards and rules, with successful implementation across states
- Reduced demand for resources per capita e.g. primary energy, water as a result of increased resource efficiency by public and industry
- Rapid development and commercialization of improved environmental technologies thanks to effective international collaboration
- The public is committed to invest in environmental improvement
- The water framework directive implementation plans are in place throughout the EU and there is strong progress towards meeting ecological quality objectives
- Limited growth of waste volume per capita (corresponding to further decoupling of waste and GDP growth) because of effective European waste prevention policy/campaigning and consumer side prevention due to high public awareness and willingness to act
- Adoption of stronger waste recycling and reuse targets for existing product groups, and introduction of new targets or adoption of life cycle approach for new materials and product groups

Full description of Environmental Images (general and theme-specific) is provided in Appendix 1

... while the LPI depicts a world with global fragmentation of environmental policies and actions, and continued increase in demand for resources

Key elements of LPI 2030

- Due to international rejection of a global climate change agreement, the EU climate change policy is constrained and EU countries cannot agree on new common standards, leading to ineffective policies and trading of CO₂
- High security of supply of oil and gas, because of stable supply from Middle east and Russia and new discoveries of oil and gas, leading to low oil/gas prices, e.g. ~30 USD (2006) /barrel oil
- Limited development and/or implementation of new EU environmental standards and rules
- Continued increase in demand for resources e.g. primary energy, water due to unresponsive public and industry
- Weak mechanisms for development and commercialization of improved environmental technologies
- The public is aware of environmental issues but not willing to change behaviors. Demand for resources continues to grow alongside economic growth
- The water framework directive implementation plans are in not place in most EU countries and there is weak progress towards meeting ecological quality objectives
- Growing waste volume per capita due to enduring (and only slightly decreasing) coupling of waste and GDP growth; due to minor effects from consumer side prevention and not all producers taking waste prevention measures
- Current Dutch waste recycling and reuse targets are not further strengthened, and the rest of EU migrates towards current NL levels

Full description of Environmental Images (general and theme-specific) is provided in Appendix 1

Overview of expected 2030 emission levels according to experts and ADL judgment

Theme	Pollutant	Measure	Level 2004
Climate	CO ₂ -eq	National annual emission in CO ₂ - equivalent (Mton)	217 Mton
	NO _x	National annual emission (kton)	379 kton
	SO ₂	National annual emission (kton)	65 kton
Air Quality	VOC	National annual emission (kton)	181 kton
	NH ₃	National annual emission (kton)	134 kton
	PM _{2,5}	Annual average urban $PM_{2,5}$ concentration, (µg/m ³)	21 µg/m³
Water	Nitrogen	Average purification efficiency - waste water treatment (%)	72 %
Quality	Phosphorus	Average purification efficiency - waste water treatment (%)	81 %
Waste	Household &	Total domestic volume (Mton)	14 Mton
	Commercial	Recovery (as % of total volume)	54%

1) Range of interviewee responses, from lowest emission estimate for LPI (yy) to highest estimate for the HPI (xx) Image. Numbers in circles are calculated by taking into account Arthur D. Little weighting of responses

Source: VROM, Expert interviews, Arthur D. Little analysis

Overview of expected 2030 emission levels according to experts and ADL judgment

Theme	Pollutant	Measure	Level 2004
Climate	CO ₂ -eq	National annual emission in CO ₂ - equivalent (Mton)	217 Mton
	NO _x	National annual emission (kton)	379 kton
	SO ₂	National annual emission (kton)	65 kton
Air Quality	VOC	National annual emission (kton)	181 kton
	NH ₃	National annual emission (kton)	134 kton
	PM _{2,5}	Annual average urban $PM_{2,5}$ concentration, (µg/m ³)	21 µg/m ³
Water	Nitrogen	Average purification efficiency - waste water treatment (%)	72 %
Quality	Phosphorus	Average purification efficiency - waste water treatment (%)	81 %
Waste	Household &	Total domestic volume (Mton)	14 Mton
	Commercial	Recovery (as % of total volume)	54%

1) Range of interviewee responses, from lowest emission estimate for LPI (yy) to highest estimate for the HPI (xx) Image. Numbers in circles are calculated by taking into account Arthur D. Little weighting of responses

Source: VROM, Expert interviews, Arthur D. Little analysis

For the High Performance Image, national emission reductions for 2030 vs. 2004 are expected to range from -30% to -60%, depending on the pollutant

Key learnings from the quantification of Environmental Images 2030

- Under the High Performance Image, national emissions are expected to be reduced significantly (-30% to -60%) for all pollutants within climate change, air and water. Even under the Low Performance Image, emissions of all pollutants within climate change, air and water in 2030 would have to further be reduced vs. 2004 levels
 - Strongest reductions are expected for NO_x (minus 40 60%) and CO_2 -eq (minus 20 40%)
 - Emissions of CO₂ in the Netherlands are expected to develop along the 550 ppm to 650 ppm international stabilization level pathways for all Images, while the 450 ppm pathway seems out of reach even for the HPI
 - For air quality pollutants, expected MPI 2030 levels appear to be close to the draft targets set by the European Commission for 2020
 - For waste volume, the expected evolution is highly uncertain, ranging from a limited increase of 10% to a significant increase of 70% (if proportional link with GDP growth remains). Under all Images, the waste recovery ratio is expected to increase
 - For waste water treatment, N & P purification rates are expected to be around 90% under HPI
- SO₂ emissions, as defined under the HPI 2030, are predicted to be close to long-term sustainable levels²). For other pollutants, further emission reductions can be expected after 2030

1) Emission pathways for long-term CO₂-equivalent concentration stabilization levels, translated to the Dutch situation. The 450ppm CO₂-equivalent pathway corresponds most closely to the official EU climate target of +2°C

2) Long-term sustainable levels as indicated in Nationaal Milieubeleidsplan 4 (NMP-4) Source: VROM, Expert interviews, Arthur D. Little analysis

2

A reference projection for 2030, based on "business as usual", was drafted in order to estimate the performance gap with the three Images

1	Introduction
2	Environmental performance levels for 2030
3	Cost comparison of existing solutions
4	General conclusions & next steps
А	Appendices

For each pollutant, a high-level overview of the most relevant solutions and relative cost efficiencies is provided

Fuel shifts, energy demand management in manufacturing industry, and carbon capture and storage are the most cost efficient ways to reduce CO₂

Cost efficient solutions for CO₂ control

- To meet future expected increases in electrical power consumption, construction of new nuclear or gas plants (instead of new coal plants) is the most cost-efficient existing measure¹⁾ to limit CO₂ emissions
- Energy demand management in the manufacturing industry is a second cost efficient way to reduce CO₂ emissions. It could lead to additional savings of 1% per year in addition to autonomous improvement

Costs for energy demand management are on average far less compared to other measures for the manufacturing industry. R&D efforts in this field should be strongly encouraged, as well as development of appropriate regulatory instruments and incentives

- Both under HPI and LPI, Carbon Capture and Storage (CCS) also appears as an important part of the solution mix, with a cost efficiency of €50 per ton²⁾ of CO₂ by 2030
- This study focuses on solutions that generate significant national impact on emission reduction. Solutions with less significant national impact are therefore not included, although combined they might have significant impact. For instance, additional industrial CHP³ and high-efficiency Wasteto-Energy plants are cost-efficient solutions, their national impact on CO₂ emissions is assumed to be relatively limited

Source: ECN/MNP, Expert interviews, Arthur D. Little analysis and estimates

 CO_{2}

¹⁾ Based on estimation of costs in 2030. Assuming an increase in gas price compared to coal price; 2030 commodity price of gas at 13 €ct/m3 and 2030 commodity price of coal at 40€/ton, non-indexed price level 2005

²⁾ Non-indexed cost level 2005

³⁾ Additional to the increase of industrial CHP in the Reference 2030

CO₂ 3

Other less cost efficient solutions may be attractive if political, social and/or macro-economic considerations are taken into account

Cost efficient Solutions for CO₂ control (continued)

- Although fuel shifts and CCS are attractive from a cost-efficiency perspective, these solutions could have negative side effects (see Appendix 3.1 for more details)
 - Fuel shifting to gas increases the dependence on supply of gas, which has a risk of price increases linked to the insecurity of supply
 - Fuel shifting to nuclear is linked with several social and political barriers
 - CCS is not yet proven on large scale and leads to increased NO_X emissions due to associated loss in energy efficiency
- Other less cost-competitive measures such as wind and biomass might therefore be attractive if other selection criteria than costs are incorporated, e.g. national dependency on gas, effects on industry competitiveness, social acceptance

Source: ECN/MNP, Expert interviews, Arthur D. Little analysis

Cost efficiency of CO₂-emission reduction measures

differential between the proposed solution and the baseline new coal alternative, not to the absolute cost of the proposed solution.

2) Sum of CCS measures corresponds to annual storage capacity of 45 Mton of CO₂ by 2030

3) Demand savings assumed at 1% CAGR on top of autonomous savings; industry-specific measures (including CHP) with varying cost efficiencies Source: ECN/MNP, EU IPPC BREF, Expert interviews, Arthur D. Little analysis and estimates

A considerable amount of fuel shifts and CCS is required to keep the total costs for climate change limited to ~ \in 2.1 bn/yr ¹) by 2030 under the HPI

Costs of CO₂ control

- The marginal cost for CO₂ reduction is ranging from €40 70 per ton¹⁾ by 2030 for the High and Low Performance Image respectively
- Total national costs of CO₂ measures for industry are estimated to reach between € 1.1 and € 2.1 bn/yr¹ by 2030, under the LPI and HPI respectively
- CCS is an important part of the cost efficient solution mix even under the LPI
- If CCS does not meet its high expectations in terms of annual capacity (45 Mton), other less cost efficient measures will be needed to meet the required HPI by 2030. For example, marginal cost for CO₂ reduction could go up to € 100 200 per ton¹⁾ for HPI by 2030 if annual capacity of CCS is reduced to 30 Mton
- If CO₂ reduction efforts for other source categories (e.g. transportation) are lower than assumed, less cost efficient solutions could be required
- Cost efficiency data are most uncertain for nuclear (linked to total costs of waste handling and plant decommissioning) and for biomass (linked to market price for biomass feedstock)

1) Non-indexed cost level 2005

In order to have the required emission reductions in place by 2030, many political, legal and technological hurdles have to be addressed immediately

Key Enabling actions for CO₂ control

- To enable full implementation of energy demand management by industry
 - R&D in energy efficiency technology has to be supported
 - Regulatory instruments to encourage efficiency improvements have to be developed
- To be able to fully utilize CCS by 2030, urgent action (before 2010) is required by industry and government
 - CCS systems have to be proven at large scale via international co-operation
 - Active carbon market has to be supported and developed
 - Legal and fiscal incentive frameworks for CCS have to be developed
 - CCS infrastructure has to be constructed, (e.g. by starting with existing pipeline infrastructure)
 - Economically viable sites for new power plants have to be identified near pipeline or CCS storage facilities and new power plants have to be built "CCS ready"
- Investments in RD&D in emerging or other existing technologies should be encouraged if expected costs are competitive compared to the estimated marginal costs in 2030 (€ 40 70 per ton¹), or if such technologies can bring significant benefits besides cost efficiency

Detailed overview of enabling actions is given in Appendix 3.1

1) Non-indexed cost level 2005

Arthur D Little

 CO_2

NO_x 3

Further improvement and full implementation of existing state-of-the-art technologies among large energy installations is required to meet the HPI

Solutions for NO_X control

- To meet the HPI, improved Low NO_x burners (LNB) and Selective Catalytic Reduction (SCR) have to be implemented across almost all combustion installations within the Dutch NO_x emission trading scheme (NO_x-ETS)¹⁾ in the power sector, manufacturing industry and refineries
 - Implementation of current emission standards, required under the NO_{χ}-ETS till 2010, will already bring almost half of the NO_{χ} emission reductions required for 2030 under HPI
 - After 2010, Ultra Low NO_X burners are expected to bring improved emission reduction rates (compared to classical LNBs) at low costs (~ €1 per kg²)
 - Optimised Selective Catalytic Reduction systems are expected to offer NO_X reduction rates of 95% by 2030 against a medium cost efficiency (~ € 3 per kg²)
- In addition to CO₂ emission reductions, fuel shifts and new IGCC as alternatives to conventional coal power generation offer associated reductions of NO_x emissions
- Based on cost efficiency ranking, NO_x control measures on smaller industrial installations currently not covered under NO_x-ETS – are not expected to be required (even under HPI). However such measures could be required by local authorities in accordance with the EU-IPPC directives

Since 2005, a national NOx ETS covers all combustion installations with a capacity > 2MWth or yearly emissions > 50 tons NOx
 Non-indexed cost level 2005

Cost efficiency of industrial NO_x emission reduction measures

1) Current NO_X emission trading scheme (ETS) covers combustion installations with capacity >20MW_{th} or NO_X emission > 50ton

2) Corresponding to emission standards of 40 g/GJ by 2010 within emission trading scheme (ETS); measures already mostly implemented by 2007

3) Costs of fuel shifts are fully allocated to CO_2 . If costs of new nuclear plant were to be fully allocated to NO_x , cost efficiency would be >15 \notin kg

4) Corresponding to emission standards of 20 g/GJ by 2030 within emission trading scheme (ETS)

Source: ECN/MNP, VROM, Expert interviews, Arthur D. Little analysis and estimates

Arthur D Little

NO

NO_x 3

Total annual costs by 2030 for NO_X abatement range from \in 10 to 105 mln¹), for power generation and manufacturing installations under Dutch NO_X-ETS

Costs and enabling actions for NO_x control

- The marginal cost for NO_X reduction is estimated at €1 3 per kg¹⁾ by 2030 for the Low and High Performance Image respectively
- Implementation of technology solutions for power generation and manufacturing installations under Dutch NO_x-ETS are expected to lead to total annual costs of €10 - 105 mln¹) by 2030, for the Low and High Performance Image respectively
- Main enabling factors for implementation of NO_x reduction measures are
 - Increased research, development and dissemination (RD&D) to reduce the costs of technologies,
 - Continuous adaptation of emission standards within NO_x-ETS

Detailed overview of enabling actions is given in Appendix 3

1) Non-indexed cost level 2005

SO₂ 3

Fuel shifts and FGD are required on coal power plants and main industrial sources, leading to increased cost of € 20 - 35 mln/yr ¹) by 2030

Solutions, costs and enabling actions for SO₂ control

- To meet the HPI with existing technologies, fuel shifts and flue gas treatment are required on all coal power plants and main industrial sources (e.g. refineries, carbon black production)
 - Although primary effect of fuel shifts in power generation is CO₂ emission reduction, significant SO₂ emission reductions are an associated benefit
 - Flue gas desulphurisation offers end-of-pipe emission removal rate of 90% at costs varying from €1 3 per kg, respectively for large scale sources (coal power generation, refineries, black carbon) and smaller scale sources in industry
- In order to be cost competitive, potential new technologies should cost no more than €2 3 per kg¹, which is the estimated marginal cost in 2030 for industrial SO₂ emission reduction
- Implementation of industrial measures are expected to lead to an increased cost base of € 20 35 mln/yr ¹) by 2030, for the LPI and HPI respectively (excluding the costs of fuel shift in power generation, assuming that such costs are fully allocated to CO₂ emission reduction)
- Under the HPI, the largest share of the cost by 2030 are related to refineries, however as part of a covenant refineries have already committed to implement their most costly measure, i.e. fuel shifts, by 2007
- Main enabling factors for implementation of SO₂ reduction measures areIncreased research, development and dissemination (RD&D) to reduce the costs of technologies,
 - Continuous adaptation of regulatory requirements

1) Non-indexed cost level 2005

Cost efficiency of industrial SO₂-emission reduction measures

Costs of fuel shifts are allocated to CO₂. If cost of new nuclear plant were fully allocated to SO₂, cost efficiency would be > € 13 per kg SO₂
 As part of a covenant, refineries already committed to reduce SO2 emissions from 2010 onwards by switching fuel used in their furnaces (from sulphur-rich oil to gas), also with the objective to reduce emissions of particulate matter
 Source: ECN/MNP, EU IPPC BREF, Expert interviews, Arthur D. Little analysis and estimates

Arthur D Little

SO₂

Waste 3

Without substantial *prevention* measures, waste growth will remain linked to GDP growth, resulting in serious cost increases

Overview for consumer & commercial waste (1/4)

- Largest recovery improvement potential is in *consumer* and *commercial* waste streams, primarily in *plastics* (focus of this study)
- NL currently has already one of the highest recovery ratios¹⁾ in the EU. In the HPI, close international cooperation and decisiveness to act require NL to further improve its recovery performance by 2030. In the LPI, lack of effective international alignment results in the rest of the EU converging towards performance levels that are similar to the current Dutch ones
 - In the HPI, substantial *prevention* by both consumers and producers is essential to reach the anticipated required waste volume reduction
- Because of insufficient prevention, the LPI waste volume will grow by 70% growth to 24 Mton/yr, requiring very substantial investments to prevent landfill and to reach recovery performance
 - Investments for additional processing installations alone range from €4 7 bn² in NL
 - Annual additional collection and processing cost of commercial and consumer waste in NL would amount to € 2.8 bn²⁾³⁾ (i.e. ~50% of NL total waste sector turnover in 2004)
 - Under the HPI, additional annual cost would amount "only" to €0.6 bn (excluding the cost of producer's side prevention of waste), highlighting the value of effective waste prevention

1) Defined as combined 'valorisation', 'recycling' and 're-use' steps of the recycling hierarchy

2) Non indexed cost level 2005

Source: Statline, TNO, Expert interviews, Arthur D. Little analysis

³⁾ Average cost of €275/ton times 10 Mton/yr of additional volume

Waste 3

Cost effectiveness of available solutions is highly dependent on specific situation – but their environmental impact differs

Overview for consumer & commercial waste (2/4)

- Several options exist to improve the recovery ratio for consumer and commercial waste. The cost effectiveness of these options is highly dependent on specific circumstances (e.g., geographical location, waste composition, collection method, markets for recycling products)
 - On average, currently available solutions cost ~ €275 per ton of mixed waste (for collection & processing), but variances are high (up to > €400 per ton)
 - Examples of solutions that can be cheaper in specific situations
 - Mechanical Biological Treatment (MBT) of organic waste, primarily if this fraction of the waste stream is collected separately from the source
 - Post separation of plastics, if markets are established for separated plastic waste materials
- The environmental impact of the available solutions can however differ substantially¹)
 - E.g. MBT and post separation have a lower environmental impact compared to conventional Waste-to-Energy (WtE). The solution's strong focus on recovery can result in 400 kton/yr CO₂ savings and 40% less final landfill vs. other source separation collection options that rely more heavily on conventional incineration

1) Life cycle analysis of environmental impact of available solutions is out of scope Source: TNO, PWC, Expert interviews, Arthur D. Little analysis

Waste 3

Waste markets offer substantial potential for innovation, but current legislation may hinder full exploitation

Overview for consumer & commercial waste (3/4)

- Areas that could offer high potential for innovation opportunities include
 - Preventing waste: e.g. further develop biodegradable packaging in order to reduce costs and improve technical properties
 - Developing markets for separated waste streams, e.g. for post- and source-separation processes: improving quality of secondary fuel, cleaning separated plastics to allow improved recycling, finding new markets for recycled products, etc.
 - Further improving MBT processes and the production of biofuels (for organic waste streams)
 - Developing high efficiency Waste-to-Energy plants in advantageous locations (e.g. where produced heat can be used effectively)
- Current investment plans favour WtE capacity expansion for a number of reasons
 - WtE technology is proven, and fits competencies of mayor players in waste sector
 - Immature recycling markets prevent alternative, potentially more environmentally friendly and cost efficient solutions from being cost competitive in the short run
Waste 3

Waste markets offer substantial potential for innovation, but current legislation may hinder full exploitation

Overview for consumer & commercial waste (4/4)

- Investments in WtE could be a barrier for innovation in alternative solutions for 20-30 years (plant lifetime), given the low marginal costs of operating WtE capacity once built
- Especially in the event that incineration will not be classified as 'recovery' by the EU in 2030, innovation in other solutions will be essential to reach recovery performances for both the LPI and the HPI. Therefore, from an environmental standpoint, innovation should simultaneously focus on:
 - Optimising energy efficiency for all WtE projects
 - Further exploring ways to develop recycling markets, thereby reducing the net costs of waste separation, MBT and other innovative concepts

Significant prevention measures by both consumers and producers are required to reduce growth of waste volume to 0.5% per annum under the HPI

2) Historic average growth rate of consumer and commercial waste volume was 2.3% p.a. (1990-2004)

Arthur D Little

37

Waste

Cost efficiency of waste processing options to increase recovery ratio is highly dependent on specific situation, and roughly averages to € 275 per ton⁵⁾

		Waste processing options (to increase recovery ratio)
	0.	Waste prevention by consumers and producers
ə'	1.	Mechanical Biological Treatment (MBT) / production of biofuel (mono-stream collection) ²⁾
	2.	Post-collection plastics separation ³⁾
	3.	High-efficiency Waste-to-

Waste

- 4. Plastics separation at source ²⁾
- 5. MBT / production of biofuel (mixed stream collection)
 See Appendix 3.4 for full description of measures

1) Cost range for processing waste streams, incl. costs for collection, separation and pre-treatment of waste.

- 2) Requires mono waste stream collection, i.e. separated collection of one waste stream at consumer source
- 3) High variation in cost is depending on developments of recycling markets for separated waste streams
- 4) Classification according to expert is 'Recovery' in 2030, which is currently under discussion in EU
- 5) Cost efficiency has high variance depending on situation/application. Depending on circumstances, costs mostly range between €250-300+. For calculation purposes, an average of €275 is assumed

Source: SenterNovem, VROM, TNO, Cyclus, Expert interviews, Arthur D. Little analysis and estimates

The LPI has very substantial impact on requirements for new waste processing installations because of the expected volume increase

Arthur D Little

Waste

Water 3

Optimization of existing installations – at total cost of € 300 mln/year – would be sufficient to meet the HPI 2030 for N and P removal from waste water

Solutions for waste water treatment

- Optimization of existing waste water treatment (WWT) installations would be sufficient to meet the High Performance Image 2030 for nitrogen and phosphorus removal
- Measures to improve purification efficiency are optimization of existing installations, or membrane bioreactors in case of renewed installations
- If further improved and demonstrated at large scale, new membrane bioreactors could offer higher purification efficiency at a cost level comparable to optimized conventional installations
- The estimated marginal cost in 2030 for increased purification efficiency in WWT is €20 per year¹⁾ per population equivalent
- Total cost for Dutch urban WWT sector excluding industrial WWT- to meet the HPI is estimated at € 300 mln/yr¹) by 2030
- Main enabling factors for implementation of improved purification efficiency are
 - More stringent legal requirements
 - Increased research, development and dissemination (RD&D) to reduce the costs of membrane bioreactors
 - Enforcement of comparable efforts from other sources categories, especially agriculture

Waste water treatment has a relatively small impact on the total pollution of Dutch surface waters. Due to the exclusion of agriculture from the scope, this study does not provide a complete overview of the solutions to improve water quality

1) Non-indexed cost level 2005

See Appendix 3.5 for full description of measures

Measures to improve purification efficiency are optimization of existing installations, or membrane bioreactors in case of renewed installations

Measure		Purification Efficiency	Investment ¹⁾ 2030	Operat. Cost ^{1,2)} 2030, annual	Expl. Cost ^{1,2)} 2030, annual
ing tions	0 Full implementation of conventional N and P removal	Measures were enforced by Dutch law (AMvB Lozingsbesluit Afvalwater, 1996) and are expected to be fully implemented by 2008			
Exist installa	1 Optimisation of existing conventional waste water treatment installations ³⁾	~90% (N) ~95% (P)	€50-150 per p.e.	€3-5 per p.e.	€7-20 per p.e. (NL av. €11 per p.e.; 26 mln p.e. in NL)
ved ions	2 New membrane bioreactor (MBR)	90 - 95 % (N) 95 - 99 % (P)	€150-400 per p.e.	€25-45 per p.e.	€ 30-55 per p.e.
Renev installat	3 New installation with optimised conventional WWT				€ 30-55 per p.e.
(1) Optimisation of existing WWT installations is sufficient to meet the HPI, although in case of replacement of existing installations, (2) new MBR could offer an improved and more cost efficient solution					

1) High and low cost figures in range correspond to installations with capacity of 20.000 and 100.000 population equivalents (p.e.) respectively 2) Operating costs exclude depreciation; whereas exploitation costs include depreciation

3) Assuming measure (0) "Full implementation of conventional P and N removal" is in place

Source: STOWA, Expert interviews, Arthur D. Little analysis and estimates

Arthur D Little

Water 3

1	Introduction
2	Environmental performance levels for 2030
3	Cost comparison of existing solutions
4	General conclusions & next steps
А	Appendices

4

Fuel shifts, energy demand management and waste recycling offer significant improvement on more than one environmental pollutant

General conclusions (1/3)

- Among the examined solutions, some present the advantage of offering improvement on more than one environmental pollutant
 - Fuel shifts in power generation (i.e. providing additional power from new nuclear or IGCC coal plants instead of conventional coal plants), and energy demand management in industry offer beneficial effects on both climate change (emissions of CO₂) and air quality (emissions of NO_x and SO₂)
 - Waste recycling technologies can contribute to a reduction of primary energy consumption and associated CO₂ emissions
 - Recycling of waste contributes to savings in CO₂ emissions
- On the other hand, some solutions may have a negative effect on other environmental themes
 - Waste-to-Energy has a negative side impact on air quality and climate change
 - Carbon Capture and Storage has a negative side impact on air quality

Existing technologies will theoretically suffice to reach HPI, nevertheless continued innovation and immediate action are essential (1/2)

General conclusions (2/3)

- Implementation of the right mix of existing technologies is theoretically sufficient to meet the expected HPI by 2030 for all environmental themes and pollutants in-scope, assuming that this is done timely and at the right scale
 - But associated cost can be substantial (especially for LPI waste)
- Continued innovation will nevertheless be essential to
 - Improve the cost efficiency, environmental impact and applicability of existing or emerging technologies
 - Prepare timely for further emission reductions anticipated after 2030
 - Pursue other political agendas (e.g. lessening dependency on fossil fuels, etc.)
- New breakthrough technologies could also be required if industry has to bear a larger share of the emission reductions than other source categories (e.g. transportation, agriculture or housing).

Existing technologies will theoretically suffice to reach HPI, nevertheless continued innovation and immediate action are essential (2/2)

General conclusions (3/3)

- In order to have the required solutions fully implemented by 2030, immediate action (before 2010) is required by industry and government. Actions with the highest priority include
 - For Carbon Capture and Storage, legal and fiscal incentive frameworks have to be developed and increased research, development and dissemination (RD&D) is required to mature this technology on a large scale.
 - For increased energy demand management by industry, RD&D in energy efficiency technology has to be supported and effective regulatory instruments have to be developed
 - Increased RD&D is required in order to continue to reduce the costs of end-of-pipe measures for NO_x and SO₂
 - Legal frameworks have to be developed requiring higher recovery ratio for waste in general and for specific waste streams

Emerging technologies will only be cost-competitive if they can benchmark positively against the marginal cost efficiency of existing technologies

Theme	Pollutant	Marginal cost ¹⁾ of additional abatement in 2030		
		HPI	LPI	
Climate	CO ₂	~ €70 per ton	~ € 40 per ton	
Air	NO _x	~€3 per kg	~ €1 per kg	
Quality	SO ₂	~€3 per kg	~ €2 per kg	
Water Quality	Nitrogen	~ € 20 per p.e. ²⁾	~€0 per p.e. ²⁾	
Water Quanty	Phosphorus			
Waste	Household & Commercial	~€275 per ton	~€275 per ton	
 Non-indexed cost level Population equivalent p 	2005 Der year	Source: Expe	ert interviews. Arthur D. Little analysis	

Meeting the HPI is estimated to lead to additional cost of € 3.1 bn/yr by 2030, climate change being the major contributor with € 2.1 bn/yr by 2030

Meeting the LPI is estimated to lead to additional cost of € 3.9 bn/yr by 2030, waste being the major contributor with € 2.8 bn/yr by 2030

Overview of required technologies per industry sector if selection of national solution mix would be based on cost efficiency

Power	Manufacturing (incl. Refineries)	Waste water treatment
 Fuel shifts from conventional coal to nuclear power gas power IGCC coal Carbon capture and storage (CCS) on new coal and gas plants 	 Energy demand management CCS on industry sources of non-combustion CO₂ (ammonia, refineries) new large scale CHP Ultra Low NO_x burners on all 	 Full implementation of conventional N and P removal Optimisation of existing conventional waste water treatment installations New membrane bioreactor (MBR)
 new coal and gas plants existing coal and gas plants Ultra Low NO_X burners on all power plants Further optimisation of Selective Catalystic Reduction (SCR) on coal and large gas power plants Optimization of flue gas desulphurization (FGD) on coal power plants 	 combustion installations Further optimisation of SCR on large process installations FGD, carbon black production FGD on regenerator catcrackers in refineries Fuel shift (from oil to gas) in refinery furnaces 	 Waste treatment ¹⁾ Increased Mechanical Biological Treatment (MBT) / production of biofuels, for organic fraction Plastics post-separation High-efficiency Waste-to- Energy

Cost efficient industrial solution mix corresponding to High Performance Image

1) The choice for a specific waste treatment solution will highly depend on future legislation, subsidies, installed base of treatment capacity and markets for recycled materials

Continued support to international environmental agreements and comparable efforts from other sources are major requirements to meet HPI

Enabling factors to meet HPI 2030				
Theme	Short term (now - 2010)	Medium term (2010 - 2020)	Long term (2020 - 2030)	
General	 Realise comparable efforts from other Continue to support international agree a fair level playing field on the internati Invest in RD&D to improve cost-efficient 	major source categories, eg. tran ements on environmental perform onal market (starting with EU) ncy and performance of most attra	sportation, agriculture ance in order to contribute to active technologies	
Climate Change	 Rationalise and develop legal structure for CCS Assess availability of geological stores for CO₂ storage Identify economically viable sites for new power plants (near pipeline or CCS storage facilities) New power plants have to be built "CCS ready" Use regulatory frameworks to drive energy demand management in Industry 	 Construct CCS infrastructure pipelines, etc.) Continue to support and development an	(e.g. use of existing elop an active carbon market	

4

Furthermore, investments in RD&D of promising technologies are required to further improve cost efficiency and performance

Enabling factors to meet HPI 2030				
Theme	Short term (now - 2010)	Medium term (2010 - 2020)	Long term (2020 - 2030)	
Air Quality	 Invest in research, development and dissemination (RD&D) to further reduce cost-efficiency and performance of promising technologies (Low NO_x Burners, selective catalytic reduction, flue gas desulphurization Ensure regulatory requirements continually adapt to best available technology Maintain NO_x-ETS to drive cost effective solutions into the market 			
Waste	 Develop legal framework requiring higher recovery ratio (for total waste volume and specific waste streams) Stimulate prevention by consumers and producers Develop climate for innovation in markets/applications for separated (plastic) waste streams 			
Water Quality	 Invest in RD&D to improve energy Realise comparable efforts from other 	efficiency of membrane bioread ner sources categories, especia	ctors ally agriculture	

After assessment of willingness to participate, VROM intends to support industry with development and implementation of innovation programs

Next steps	
Support industry innovation programs	 After publicizing the study, the Ministry of VROM intends to engage in discussions with key industry sectors to assess their willingness to participate in a follow-up phase This phase will focus on the development and implementation
	of joint environmental innovation programs aimed at reducing the costs and improving the performance of identified technology solutions.
Expansion of scope	Expansion of the scope of the current analysis, so as to include other key source categories (e.g. agriculture and transportation) which could not be covered in this initial analysis, will be considered by VROM
	Other environmental themes (e.g. REACH chemicals or biodiversity) could also be analyzed if requested by industry
	It may also be interesting to conduct a similar analysis for emerging technologies not covered by the present study.

A1	Des	cription of Environmental Images 2030	
A2	Reference emissions 2030 for CO_2 , NO_x and SO_2		
A3	Detailed overview of solution mixes		
	A3.1	Solution mix for CO ₂	
	A3.2	Solution mix for NO _X	
	A3.3 Solution mix for SO ₂		
	A3.4 Solution mix for waste		
	A3.5	Solution mix for water	
A4	List of experts and principle sources		

General Images 2030 (1/3)

High National Performance (Image 1)

1. Level of commitment on Climate Change	 Global commitment and global development of policies Industrial powers produce agreement on internalising GHG costs, for all major sectors/gases Large developing countries (India, China) are investing locally in green technologies Market price of CO₂ emission rights is high
2. Level of EU Environmental Harmonisation	 EU agrees on new and more stringent standards and rules for air, water and waste Collaborations on trans-national environmental issues achieve high levels of protection Policies are implemented consistently across member states, recognizing regional differences
3. Supply of Oil and Gas	 Low perceived security, Oil/gas prices are high as a result, e.g. ~70 USD(2006) /barrel oil Tensions in Middle East/North Africa and unreliable supply from Russia & Central Asia
4. Environmental commitment of Dutch Public	 Several incidents in Netherlands or internationally have raised awareness Dutch public and NGOs are highly committed to investments in environmental improvement, because of fear of direct impact on health, ecosystems and economy
5. Effectiveness of innovation	 Effective mechanisms for development, commercialisation and adoption of R&D and technology Specialised skills are widely available
6. Demand for resources	- Strong increase in resource efficiency resulting in decline in demand per capita (use of energy and other resources (e.g. water and raw materials) is decoupled from economic growth)

General Images 2030 (2/3)

Medium En	vironmental Performance (Image 2)
1. Level of commitment on Climate Change	 OECD countries are committed to CO₂ reductions, with variations in level of commitment. OECD countries pay for investments in developing countries (e.g. CDM and JI) Market price of CO₂ emission rights is medium
2. Level of EU Environmental Harmonisation	 EU countries agree on new and more stringent standards and rules for air, water and waste Collaborations on trans-national environmental issues achieve high levels of protection Policies are implemented consistently across member states, recognizing regional differences
3. Supply of Oil and Gas	 Medium perceived security, Oil/gas prices are fluctuating, e.g. 30-70 USD/barrel oil (USD 2006) Temporary tensions in Middle East/North Africa, but reliable supply from Russia & Central Asia Limited new resources identified in US and EU
4. Environmental commitment of Dutch Public	 Dutch public and NGOs are aware of environmental issues and health impacts, but commitment restricted mainly to health issues
5. Effectiveness of innovation	 Effective mechanisms for commercialisation of R&D and technology Adoption of technologies is less effective Specialized skills are widely available
6. Demand for resources	- Increased resource efficiency is offset by increased overall demand (growth of energy and other resources (e.g. water and raw materials) is partially decoupled from economic growth)

General Images 2030 (3/3)

Low Enviro	onmental Performance (Image 3)
1. Level of commitment on Climate Change	 Fragmentation of existing agreements; non EU-countries give preference to economic improvement instead of environmental improvement Due to US rejection of an international agreement, EU climate change policy is constrained Small and ineffective CO₂ trading market; CO₂ price is low
2. Level of EU Environmental Harmonisation	 EU countries cannot agree on new common standards and rules; national policies continue to exist, implementation of current legislation, no new regulations till 2030 Implementation of policies varies across member states
3. Supply of Oil and Gas	 High security of supply, Oil/gas prices are low as a result, e.g. ~30 USD(2006) /barrel oil Stable situation in Middle East, North Africa and Russia New discoveries have increased availability
4. Environmental commitment of Dutch Public	 Dutch public and NGOs are aware of environmental issues and health impacts However, investment in health or environmental performance is a low priority
5. Effectiveness of innovation	 R&D and technology commercialisation mechanisms are weak Adoption of new technologies is hampered by lack of public confidence Government support for developing skills base linked to environmental disciplines is ineffective
6. Demand for resources	 No major changes in resource efficiency → use of energy and other resources (e.g. water and raw materials) continues to increase jointly with economic growth)

Theme specific Images for Climate Change

High national performance	Medium national performance	Low national performance
 Growth of road transportation is stabilized Average passenger car fleet emissions continue to improve (e.g. 100 g CO₂ /km in 2030) Internalisation of carbon cost for international transport at global level (aviation, shipping) EU consensus on imposing standards for energy efficiency of consumer products Energy use per capita is reduced thanks to strong awareness, investment in smart technologies and prevention measures Nuclear energy socially accepted Intensive animal breeding in closed- system farms is socially accepted 	 Limited growth of road transportation Average passenger car fleet emissions improve slowly (e.g. 120 g CO₂ /km in 2030) Internalisation of carbon cost for international transport at European level (aviation, shipping) EU consensus on imposing standards for energy efficiency of consumer products, but only for a limited number of product categories Energy use per capita is stable (economic growth counterbalanced by some public awareness, investment in smart technologies and prevention measures) Nuclear energy is considered socially acceptable, but suffers from NIMBY Intensive animal breeding in closed-system farms is socially accepted 	 Continued growth of road transportation Average passenger car fleet emissions are not reduced significantly (e.g. 140 g CO₂ /km in 2030) No internalisation of carbon cost for international transport (aviation, shipping) EU fails to reach a consensus on imposing standards for energy efficiency of consumer products Energy use per capita continues to be coupled with economic growth Nuclear energy is socially unacceptable in NL Intensive animal breeding in closed- system farms is socially not accepted because of animal rights concerns

1) Average <u>new</u> passenger car emission NL in 2005: 170 g CO₂ / km. ACEA new passenger car emission target 2008/2009: 140 g CO₂ / km (Source: MNP)

Theme specific Images for Air Quality

High national performance	Medium national performance	Low national performance
 Growth of road transportation is stabilized Average passenger car fleet emissions continue to improve (e.g. 100 g CO₂ /km in 2030) Internalisation of environmental cost for international transport at global level (aviation, shipping) Nuclear energy is socially accepted Intensive animal breeding in closed- system farms is socially accepted Emission targets across Europe are set to achieve ecosystem protection Low-emission mass-produced technology is used increasingly for domestic and commercial heating Further reductions in VOCs due to product substitution from domestic and commercial sources 	 Limited growth of road transportation Average passenger car fleet emissions improve slowly (e.g. 120 g CO₂ /km in 2030) Internalisation of environmental cost for international transport at European level (aviation, shipping) Nuclear energy is considered socially acceptable, but suffers from NIMBY syndrome Intensive animal breeding in closed- system farms is socially accepted Emission targets across Europe are set to achieve ecosystem protection Low-emission mass-produced technology is used increasingly for domestic and commercial heating Further reductions in VOCs due to product substitution from domestic and commercial sources, for some product categories 	 Continued growth of road transportation Average passenger car fleet emissions are not reduced significantly (e.g. 140g CO₂ /km in 2030) No internalisation of carbon cost for international transport (aviation, shipping) Nuclear energy is socially totally unacceptable in NL Intensive animal breeding in closed- system farms is socially not accepted because of animal rights concerns Emission targets across Europe are set by consensus between government and industry Limited replacement of old domestic and commercial heating systems with new low- emission heating systems Further reductions in VOCs limited

1) Average <u>new</u> passenger car emission NL in 2005: 170 g CO₂ / km. ACEA new passenger car emission target 2008/2009: 140 g CO₂ / km (Source: MNP)

Theme specific Images for Water Quality

High national performance	Medium national performance	Low national performance
 WFD implementation plans are in place throughout the EU and there is strong progress towards meeting ecological quality objectives EU consensus for complete ban of most harmful categories of pesticides Following exceptional natural events (droughts, floods), water is perceived by NL public/farmers/industry as a scarce resource needing careful usage and protection Large scale adoption of new water treatment technologies, including small scale treatment technologies for decentralized sources Detergents for home use are largely substituted by low-phosphate products Intensive animal breeding in closed-system farms is socially accepted 	 WFD implementation plans are in place in most EU countries and there is good progress towards meeting ecological quality objectives EU consensus for complete ban of most harmful categories of pesticides Water is perceived by the general public, farmers and industry as medium priority, needing some further protection measures Medium scale adoption of new water treatment technologies, including small scale treatment technologies for decentralized sources Detergents for home use are largely substituted by low-phosphate products Intensive animal breeding in closed-system farms is not socially accepted because of animal rights concerns 	 WFD implementation plans are in not place in most EU countries and there is weak progress towards meeting ecological quality objectives EU does not reach consensus on more stringent controls on the use of most harmful categories of pesticides Water is perceived by the general public, farmers and industry as widely abundant, and not needing major further protection measures Limited adoption of new water treatment technologies (e.g. for decentralized sources) due to high costs The use of phosphates in home detergents continues Intensive animal breeding in closed-system farms is not socially accepted because of animal rights concerns
WFD = EU Water Framework Directive		

Theme specific Images for Waste

High national performance

- 1. Almost stable waste volume per capita corresponding to further decoupling of waste and GDP growth:
 - Effective European waste prevention policy/campaigning
 - Consumer side prevention due to high public awareness / willingness to act
 - Producers take active prevention measures to further reduce packaging waste volume
- 2. Open European market for municipal and commercial waste due to harmonized standards in Europe
- Adoption of stronger recycling and reuse targets for existing product groups (Packaging, Electronic Equipment, etc.) and introduction of new targets or adoption of life cycle approach for new materials and product groups
- Increased level of valorisation of waste- and by-products of household/commercial waste. International markets are developed for secondary raw-materials
- 5. Increased quality standards on waste incineration efficiency and emissions
- 6. EU consensus on legal ban on landfill (municipal, commercial and industrial)
- 7. Future performance levels within EU are expected to be even higher than current Dutch levels

Source: Arthur D. Little expert interviews

Low national performance

- 1. Growing waste volume per capita due to enduring (but slightly decreasing) coupling of waste and GDP growth:
 - Minor effects from consumer side prevention due to low willingness to act
 - Not all producers take prevention measures to further reduce packaging waste volume
- 2. Some national markets for municipal waste continue to exist within EU, leading to suboptimal processing of waste
- 3. Current Dutch recycling and reuse targets are not further strengthened, rest of EU migrates towards NL levels
- 4. Increased level of valorisation of waste- and by-products of household/commercial waste
- 5. Increased quality standards on waste incineration efficiency and emissions
- 6. Landfill (municipal, commercial and industrial) is legally only accepted under specific circumstances (insufficient incineration capacity, waste free of pollutants)
- 7. Future performance levels within EU are expected to converge towards current (leading) Dutch levels

Based on interpretation of the environmental Images, greenhouse gas emissions are expected to lie between 125 and 170 Mton in 2030

1) In 2004, NL acquired 20 Mtons of CO₂-emission reduction rights via the CDM /JI mechanisms, which brings down "net" emissions to 197 Mtons 2) Assuming 20 Mtons of CDM and JI emission reduction rights,

3) Emission pathways for long-term CO₂-equivalent concentration stabilization levels, translated to the Dutch situation. The 450ppm CO₂-equivalent pathway corresponds most closely to the official EU climate target of +2°C. The 550ppm and 650 ppm pathways are other reference emission pathways
Source: VROM, MNP, ECN, Ecofys

Based on interpretation of the environmental Images, greenhouse gas emissions are expected to lie between 125 and 170 Mton in 2030

A1

Greenhouse gases emissions, split by source of primary energy consumption

Dominant drivers for the CO_2 emission levels are expected to be "commitment on climate change", "demand for resources" and "supply of oil and gas"

Domestic CO ₂ -eq emissions				
Qualitative Images	Estimate ¹⁾ 2030 (range of expert responses)	Reduction (2004-2030)	Dominant drivers (in decreasing order of importance, based on expert responses)	
LPI	170 Mton (160 - 210 Mton)	-22%	G1) Level of global commitment on climate change G6) Demand for resources (especially energy efficiency) Other: efforts deployed in NL vs. in other countries (CDM, JI) G3) Supply of oil and gas: perceived security and price S2) Average car fleet emissions	
MPI	140 Mton (125 - 200 Mton)	-35%	Other: repeated stream of severe adverse climate events G1) Level of global commitment on climate change G6) Demand for resources (especially energy efficiency) G3) Supply of oil and gas: perceived security and price	
HPI	125 Mton (105 - 150 Mton)	-42%	 S2) Average car fleet emissions G4) Environmental commitment of Dutch public S4) Standards for energy efficiency of consumer products G5) Effectiveness of environmental innovation S6) Acceptance of nuclear power 	
1) Based on average	e of expert responses	and judgement of inte	rnational Arthur D. Little team Source: Expert interviews. Arthur D. Little analysis	

Based on interpretation of the environmental Images, $\rm NO_X$ emissions are expected to lie between 160 and 230 kton in 2030

1) Proposed targets in the Thematic Strategy on Air Pollution (2005), recalculated targets (2007) are not expected to differ by more than 5-10% Source: MNP, IIASA, Arthur D. Little analysis

Dominant drivers for the $NO_{\rm X}$ emission levels are expected to be "EU Harmonisation", "Average car fleet emissions" and "Demand for resources"

NO _x emissions 2030				
Qualitative Images	Estimate ¹⁾ 2030 (range of expert responses)	Reduction (2004-2030)		Dominant drivers (in decreasing order of importance, based on expert responses)
LPI	230 kton (180 - 250 kton)	-39%	G Si G	 Level of EU Environmental Harmonisation Average car fleet emissions Demand for resources (especially energy efficiency) Supply of oil and gas: perceived security and price
MPI	200 kton (160 – 235 kton)	-47%	G	 2) Level of EU Environmental Harmonisation 2) Average car fleet emissions 6) Demand for resources (especially energy efficiency)
HPI	160 kton (120 – 221 kton)	-58%	G G S S S	 Supply of oil and gas: perceived security and price Effectiveness of environmental innovation Standards for energy efficiency of consumer products Acceptance of nuclear power Internalization of environmental costs in int'l transport

Note: According to interviewed experts, significant reductions (50-90 % vs. 2004 under HPI) can be expected from international shipping Source: Expert Interviews, Arthur D. Little Analysis

Based on interpretation of the environmental Images, SO_2 emissions are expected to lie between 40 and 50 kton in 2030

Dominant drivers for the SO₂ emission levels are expected to be "EU Harmonisation", "Demand for resources" and "Coal consumption"

Qualitative Images	Estimate ¹⁾ 2030 (range of expert responses)	Reduction (2004-2030)	Dominant drivers (in decreasing order of importance, based on expert responses)
LPI	50 kton (43 - 87 kton)	-23%	Other: Increased coal consumption for electricity production G2) Level of EU Environmental Harmonisation G6) Demand for resources (especially energy efficiency) G3) Supply of oil and gas: perceived security and price
MPI	45 kton (40 – 61 kton)	-31%	G2) Level of EU Environmental Harmonisation G6) Demand for resources (especially energy efficiency) Other: Decreased coal consumption due to adoption of
HPI	40 kton (25 – 45 kton)	-38%	alternative electricity production G3) Supply of oil and gas: perceived security and price G5) Effectiveness of environmental innovation S6) Acceptance of nuclear power S3) Internalization of environmental costs in int'l transport

Based on interpretation of the environmental Images, VOC emissions are expected to lie between 120 and 165 kton in 2030

Dominant drivers for the VOC emission levels are expected to be "EU Harmonisation", "Product substitution" and "Effectiveness innovation"

VOC emi	ssions 2030			
Qualitative Images	Estimate ¹⁾ 2030 (range of expert responses)	Reduction (2004-2030)	Dominant drivers (in decreasing order of importance, based on expert responses)	
LPI	165 kton (153 - 185 kton)	-9%	G2) Level of EU Environmental Harmonisation S8) Level of product substitution (e.g. by water-based paints) G6) Demand for resources (link with economic growth)	
MPI	145 kton (140 – 159 kton)	-20%	G2) Level of EU Environmental Harmonisation S8) Level of product substitution (e.g. by water-based	
HPI	120 kton (115 – 141 kton)	-34%	paints) G5) Effectiveness of environmental innovation G6) Demand for resources (link with economic growth)	
 Based on average of expert responses and judgement of international Arthur D. Little team Source: Experts Interviews, Arthur D. Little Analysis 				

Based on interpretation of the environmental Images, ammonia emissions are expected to lie between 80 and 120 kton in 2030

A1

Dominant drivers for the ammonia emission levels are expected to be "EU Common Agricultural Policy" and "Environment linked to trade"

NH ₃ emis	ssions 2030			
Qualitative Images	Estimate ¹⁾ 2030 (range of expert responses)	Reduction (2004-2030)		Dominant drivers (in decreasing order of importance, based on expert responses)
LPI	120 kton (95 - 148 kton)	-10%		Other: Level of environmental commitment included in EU Common Agricultural Policy G2) Level of EU Environmental Harmonisation
MPI	100 kton (90 – 124 kton)	-25%		Other: Level of environmental commitment included in EU Common Agricultural Policy
HPI	80 kton (70 – 102 kton)	-40%		G5) Effectiveness of environmental innovation Other: Implementation of an integrated approach to managing nitrogen pollution in all media (nitrates, NO_X , N_2O)
1) Based on average	of expert responses a	nd judgement of interr	nati	ional Arthur D. Little team

A1

PM_{2.5} emissions, split by source

A1

Based on interpretation of the environmental Images, urban $PM_{2,5}$ concentrations levels are expected to lie between 14 and 19 $\mu g/m^3$

Dominant drivers for PM_{2.5} concentrations levels are expected to be "EU Harmonisation" and "Average car fleet emissions"

Annual average urban PM _{2.5} concentration 2030							
Qualitative Images	Estimate ¹⁾ 2030 (range of expert responses)	Reduction (2004-2030)		Dominant drivers (in decreasing order of importance, based on expert responses)			
LPI	19 µg/m³ (18-20µg/m ³)	-10%		G2) Level of EU Environmental Harmonisation S2) Average car fleet emissions Other: ability to control secondary particles (linked to NH_3 , and to a lesser extent NO_X and SO_2)			
MPI	16 μg/m³ (15 -17μg/m ³)	-24%	G2) Level of EU Environ	G2) Level of EU Environmental Harmonisation Other: ability to control secondary particles (linked to NH ₂ ,			
HPI	14 μg/m³ (12-16μg/m ³)	-33%		and to a lesser extent NO_x and SO_2) S2) Average car fleet emissions G5) Effectiveness of environmental innovation S6) Acceptance of nuclear power G6) Demand for resources (link with economic growth)			

Source: expert interviews, Arthur D. Little Analysis

Based on interpretation of the environmental Images, Consumers & Commercial waste volume is expected to increase by 0,5 to 2% per annum

Guided by the Pareto principle, this study focuses on consumer and commercial waste only

At first sight, significant improvement potential of recovery ratio exists for consumer waste streams organic, paper and plastics

Also for commercial waste, significant improvement potential of recovery ratio exists for waste streams paper, plastics and organic

Dominant driver for waste volume is demand for resources; recovery ratio is driven by effectiveness of innovation and development of by-product markets

Qualitative	E (rar	Estimate ¹⁾ 2 nge of expert resp	030 ponses)	Dominant drivers			
inages	Total Volume	Recovery Ratio	Energy Efficiency WtE ²⁾	(in decreasing order of importance, based on expert responses)			
LPI	24 Mton (22-28 Mton)	60 % (55 - 65%)	24% (22 - 24%)	G5) Effectiveness innovation G6) Demand for resources S1) Waste volume per capita S3) Recycling targets S4) Valorisation of waste and by-products			
MPI	Not applicable	Not applicable	Not applicable	G4) Commitment Dutch public and producers to a G5) Effectiveness innovation			
HPI	16 Mton (14-20 Mton)	70 % (65 - 75%)	32% (30 - 35%)	Other: Development of markets for waste and by products G6) Demand for resources S1) Waste volume per capita S3) Recycling targets S4) Valorisation of waste and by-products			

Arthur D Little

A1

Main sources of emissions of nitrates (N) and phosphates (P) to Dutch surface waters are agriculture and waste water treatment

Based on interpretation of Images, P and N purification efficiency of urban waste water treatment is expected to lie between 78 and 92 %

Dominant drivers for waste water purification efficiency levels are expected to be "Water Framework Directive implementation" and "Effectiveness innovation"

Purification efficiency 2030 - urban waste water treatment

LualitativeEstimate1) 2030 (range of expert responses)Increase (2004-2030)		Dominant drivers (in decreasing order of importance, based on expert				
inages	N P N P		Р	responses)		
LPI	78% (75 - 80%)	82% (80 - 85%)	6 %-points	1 %-point	 S1) Level of implementation of the Water Framework Directive (incl. how to deal with transboundary pollution) G5) Effectiveness of environmental innovation 	
MPI	83% (80 - 85%)	87% (85 - 90%)	11 %-points	6 %-points	S1) Level of implementation of the Water Framework	
HPI	88% (85 - 90%)	92% (90 - 95%)	16 %-points	11 %-points	Directive (incl. how to deal with transboundary pollution) S2) Removal of phosphates from consumer detergents G5) Effectiveness of environmental innovation	

Source: Expert Interview, Arthur D. Little Analysis

A1	Description of Environmental Images 2030					
A2	Refe	erence emissions 2030 for CO ₂ , NO _x and SO ₂				
A3	Deta	Detailed overview of solution mixes				
	A3.1 Solution mix for CO ₂					
	A3.2	A3.2 Solution mix for NO _X				
	A3.3	Solution mix for SO ₂				
	A3.4	Solution mix for waste				
	A3.5 Solution mix for water					
A4	List of experts and principle sources					

A reference electricity production and fuel mix - excluding significant reduction measures – was drafted, to be used as a starting point for 2030

3) Historical growth rate averages 1.5-2% per year. Assumption of 1% up to 2030 to account for energy efficiency savings by private consumers

4) Sum of CO₂ emissions of Power, Manufacturing Industry, Refineries and Waste treatment

5) Non-electrical energy consumption assumed constant (autonomous energy efficiency improvement is offset by economic growth)

Source: ECN, EnergieNed, Arthur D. Little analysis

NO_X A2

A reference NO_x emission - excluding significant reduction measures - was drafted, to be used as a starting point for 2030

2) Electricity exports/imports are assumed constant because out of scope, but they could have a significant impact in case of an open EU electricity market.

Historical growth rate averages 1.5-2% per year. Assumption of 1% up to 2030 to account for energy efficiency savings by private consumers

3) The old growth rate averages 1.52% per year. Assumption of 1% up to 2050 to account for energy enciency savings by private control.

4) Non-electrical energy consumption assumed constant (autonomous energy efficiency improvement is offset by economic growth)

Source: ECN, EnergieNed, Arthur D. Little analysis

A reference SO_2 emission - excluding significant reduction measures - was drafted, to be used as a starting point for 2030

1) Average power plant utilisation is assumed to be the same in 2030 as in 2004.

2) Electricity exports/imports are assumed constant because out of scope, but they could have a significant impact in case of an open EU electricity market.

3) Historical growth rate averages 1.5-2% per year. Assumption of 1% up to 2030 to account for energy efficiency savings by private consumers

4) Non-electrical energy consumption assumed constant (autonomous energy efficiency improvement is offset by economic growth)

Source: ECN, EnergieNed, Arthur D. Little analysis

A1	Description of Environmental Images 2030					
A2	Reference emissions 2030 for CO2, NOx and SO2					
A3	Detailed overview of solution mixes					
	A3.1 Solution mix for CO ₂					
	A3.2Solution mix for NOXA3.3Solution mix for SO2A3.4Solution mix for waste					
	A3.5 Solution mix for water					
A4	List of experts and principle sources					

A1	Description of Environmental Images 2030			
A2	Refe	erence emissions 2030 for CO2, NOx and SO2		
A3	Detailed overview of solution mixes			
	A3.1 Solution mix for CO ₂			
	A3.2 Solution mix for NO _X			
	A3.3	Solution mix for SO ₂		
	A3.4	Solution mix for waste		
	A3.5 Solution mix for water			
A4	List of experts and principle sources			

Implementation of measures associated with the high performance Image are expected to lead to increased costs for power generation

Implications of	Implications of High Performance Image						
Stakeholders	Expected implications	Investment (2020-2030)	Operat.cost ¹⁾ (2020-2030)				
	1. New nuclear power plant	1800 €/kW	15 €/MWh				
	3. New gas power plant	500 €/kW	25 €/MWh				
Power	4/6. CCS on new power plants	300 €/kW	1,2 € /MWh				
generation	5/7/8. CCS on existing plants	350 €/kW	1,2 €/MWh				
	10. New wind turbines at sea	1400 €/kW	28 €/MWh ²⁾				
Energy-intensive	2. Energy demand management in manuf. industry	(Case specific)	(Case specific)				
industries	9. CCS on large scale CHP	(Case specific)	(Case specific)				
 1) Operating costs, excludin 2) Operating costs assumed 	g cost of capital I 80 €/kW in 2030 @ 2500h availability per annur	n					
Source: ECN, EU IPPC BREF, Arthur D. Little analysis and estimates							

In order to have the required CO_2 reductions in place by 2030, many political, legal and technological hurdles have to be addressed as from now

Enabling ac	tions				
Technology (group)	Short term (now-2010)	Medium term (2010-2020)		Long-term (2020-2030)	
	Engage public and stakeholders related t	to health and safety and decomr	missionii	ng	
1. New nuclear power plant	 Rationalise / harmonise permitting and legal structure for new plants Ensure diversified fuel supply through intern'l trade agreements 				
	Develop mechanisms for risk sharing between operator and government	Develop and implement pro and decommissioning	ocedure	s for managing nuclear wastes	
2. Energy demand mgt industry	 Support R&D in energy efficiency techno Introduce regulatory instruments to mana Improve integrity of the supply chain for efficiency 	logy to reduce costs age efficiency energy efficiency			
10. New wind turbines at sea	 Rationalise permitting and consents (including environmental assessments and stakeholder agreement) Overcome social resistance to wind turbines (mainly land based schemes) 	Improve capacity of interconnectors		Technology 4 to 9: Carbon Capture & Storage: see next page	
11./12.Biomass co-firing	 Develop and maintain (where appropriate) regulatory frameworks (e.g renewables obligations) Ensure stringent air quality emissions standards are applied to biomass 	Develop supply chains for feedstock			

To be able to fully utilize CCS by 2030, large scale systems, legal frameworks and economic viable sites for new power plants have to be developed soon

Enabling ac	tions			
Technology (group)	Short term (now-2010)	Medium term (2010-2020)	Long-term (2020-2030)	
49. Carbon	 Demonstrate large scale CCS system (international co-operation) Rationalise and develop legal/regulatory structure for CCS Resolve liability issues for long term 	 Construct CCS infrastructure (e.g. use of existing pipelines etc) Continue to support and develop an active carbon market 		
storage (General)	 Resolve hability issues for folg-term storage of CO₂ Create fiscal framework of incentives for enhanced oil recovery Assess availability of geological stores (currently thought to be sufficient) 	Improve integrity of the supp chain for CCS	ly	
4./8. CCS to new /existing gas power plant	 Identify economically viable sites for new power plants (near pipeline/ CCS storage facilities) 	 Develop technology for economically viable gas separation and recovery 		
6. CCS to new IGCC	Implement turnkey solutions for IGCC	Subsidise coal if energy secucion concerns become material	urity	
7. CCS to existing coal plants		 Develop economically viable technologies (e.g. oxycombolic Develop of economically via technologies (e.g. scrubbers Identify options for co-firing 	e pre combustion gas separation ustion) able post combustion gas separation s or ESPs) to diversify fuel chains	
9. CCS to Large scale CHP in industry	 Use regulatory power to ensure efficiency in overall energy mgt Provide framework of incentives for energy services and co-location 	Invest in heat delivery infras	structure	

Nuclear power offers cost-efficient emission reduction potential, however it also requires long and risky political and legal preparation

1. New	nuclear power plant					
			Category	Fuel Shift		
Technology	New nuclear power plant		Sector / Application	power sector		
Definition of	One additional nuclear power (1000MW) in the Netherlands	plant as an	Techn. Maturity 2006	Mature		
Technologyalternative for a new base coal load power plant (in reference)		al load	CO ₂ emission reduction rate	~95% (over complete life-cycle)		
	Evaluation of Technology					
	Pros		Cons			
 High CO₂ reduction potential Overall cost-efficiency appears 			Legal and political barriers, uncertainty about social acceptance (security, radioactive waste)			
high and un	certainty of final disposal cost	Oncertai plants di	plants due to upcoming revision of the Dutch Nuclear Energy Law			
Combined reduction of SO_2 and NO_x			 Risks and cost of final decommissioning of nuclear waste are uncertain 			
emissions		Reluctar	nce of most large en	ergy companies to step into nuclear power		
			High initial investments required			
		Long bu	uilding and construction time (appr. 10 years)			
Note: Cost calculative reservation of EUR	tions include accident insurance prem 20M (price level 2005, corresponding	num with a max	kimum liability of €227 r after 100 years) for fina	nin (specified by Dutch Nuclear Energy Law) and I waste disposal and decommissioning of plant		

Arthur D Little

 CO_2

Energy demand savings by industry consist of various industry-specific measures with varying cost efficiency

2. Energy demand management in manuf. industry

Technology	Energy saving measures industry,	Category	Energy Efficiency
	Excluding CHP	Sector / Application	Industry
Definition of	 conversion efficiency or reduction of energy demand) by industry part of emission trading scheme Various industry specific measures 	Techn. Maturity 2006	Mostly mature
Technology	 Various industry specific measures, Enforced by political instruments (eg. ETS, energy tax, CO₂ tax) 	CO ₂ emission reduction rate	Not applicable (depends on the specific measure)

Evaluation of Technology			
Pros	Cons		
 Fair and equal treatment of different industries in case of ETS or CO₂ tax Associated reduction of SO₂ and NO_x emissions, although small 	 Threat that energy saving measures will lead to reindustry, if cost have to be bared by industry. Bou implementation is a global/European level playing European mechanisms) This options partly competes with the introduction Cost efficiency might vary largely per industry and 	educed competitive position of Dutch indary condition for successful g field (therefore common global n of large scale CHP d specific measure	
ote: potential is based on Dutch industry mix as in WLO reference scenario, as used by ECN Source: ECN			

New gas power plants offer higher energy efficiency and lower emission levels, but potentially high future gas prices could somewhat reduce its attractiveness

3. New gas power plant					
		Category	Fuel Shift		
New gas power plant		Sector / Application	power sector		
Definition of TechnologyBuild new gas power plants instead of new coal power plants (2000MW)		Techn. Maturity 2006	Mature		
		CO ₂ emission reduction rate	50-60% (vs. coal power plant)		
	Evaluation	of Technology			
Pros		Cons			
 Higher energy efficiency and lower emission levels (CO₂, SO₂, NO_x) of gas compared to coal Medium coal Potential s Limited intervention of the second seco			at coal plants wer sector if no incentives are introduced as prices linked to insecurity of supply th power capacity		
	gas power plant New gas power plant Build new gas power plants ir new coal power plants (2000) Pros gy efficiency and lower (CO ₂ , SO ₂ , NO _x) of gas o coal	gas power plant New gas power plant Build new gas power plants instead of new coal power plants (2000MW) Evaluation Pros gy efficiency and lower vels (CO ₂ , SO ₂ , NO _x) of gas o coal Image: So coal	gas power plant Category New gas power plant Sector / Application Build new gas power plants instead of new coal power plants (2000MW) Techn. Maturity 2006 CO2 emission reduction rate Evaluation of Technology Pros gy efficiency and lower vels (CO2, SO2, NOX) of gas o coal Medium cost efficiency Potential substitute for CCS Limited interest from the pow Risk of further increase of g Lack of fuel diversity in Duto		

CCS offers high emission reduction potential, although it causes loss of energy efficiency

4 to 8. CCS on power generation or industrial installations

Technology	CCS on power generation or industrial installations	Category	Carbon Capture and Storage
		Sector / Application	power sector
Definition of Technology	Carbon Capture and Storage at existing and/or new power plants	Techn. Maturity 2006	Growing
		CO ₂ emission reduction rate	80-90%

Evaluation of Technology				
Pros	Cons			
 Favourable cost efficiency compared to other measures High total reduction potential (total Mtons) and high reduction rate (80-90% of CO₂) Associated reduction of SO₂ emissions (in case of CCS on coal-fired power plants) 	 Loss of energy efficiency varies between 9% for gas up to 13% for coal fired power plants Uncertainty about social acceptance of carbon storage Currently only small scale integrated CCS systems are proven Higher costs and deployment time in case complete new pipeline infrastructure has to be developed Increase of NO_X emissions due to associated loss in energy efficiency 			
Source: ECN, expert interviews, Arthur D. Little analysis				

Implementing large scale CHP in industry offers the potential for introduction of CCS to industrial primary energy use

9. CCS on new large scale CHP					
		Category	Energy efficiency		
Technology	CCS on new large scale CHP	Sector / Application	Industry		
Definition of	Large scale (>2MWe) steam and electricity production (Combined Heat and Power) by fuel cells instead of expectional entropy of the second states of the s	Techn. Maturity 2006	Fuel cells: emerging CCS: growing		
Technology	 Combined with Carbon Capture and Storage 	CO ₂ emission reduction rate	~80-90%		
	Evaluation	of Technology			
	Pros Cons				
 High CO₂ re Combined r combustion 	 Need to co-locate new power plant next to industrial users of heat High cost of CCS and fuel cells compared to reference Loss of energy efficiency in case of CCS Fuel cell technologies not yet fully proven 				
Source: ECN, expert interviews, Arthur D, Little analysis					

Continued subsidies on investments and energy production will be required to keep wind turbines at sea as an attractive option

10. New wind turbines at sea					
		Category	Renewables		
Technology	New wind turbines at sea	Sector / Application	power sector		
Definition of	Wind Turbines in the North sea instead of new coal power plants (2000MW)	Techn. Maturity 2006	Mature		
Technology		CO ₂ emission reduction rate	~95% (over complete life-cycle)		
Evaluation of Technology					
	Pros Cons				
 High CO₂ reduction potential Larger energy production potential compared to land based turbines Less visual pollution compared to land based turbines Incentives policies are currently in place; subsidies on investments (E and energy production (MEP). Future of this policy is insecure. In cas subsidies End-user cost are attractive Combined reduction of SO₂ and NO_x emissions 			 High costs Increased cost of (turbine) construction and operation due to severe maritime conditions and remote location Potential hazard to navigation (depending on location) 		
Source: ECN, expert interviews, Arthur D. Little analysis					

Further implementation of co-firing purified biomass in coal power plants is highly depending on the development of markets and prices for biomass

11. Biomass purified co-firing					
Co-firing purified biomass in		Category		Renewables	
Technology	conventional coal power plants	Sector / Applicatio	on .	power sector	
Definition of Co-firing purified biomass in coal pow		Techn. Maturity 20	006	Mature	
Technology	gasification of polluted biomass and waste derived fuels	CO ₂ emiss reduction i	ion rate	~90 % (over complete life-cycle)	
Evaluation of Technology					
	Pros			Cons	
 High reduction potential Proven and mature technology Applicable to polluted biomass or waste derived fuels (WDF) Relatively low and stable prices of WDF Flexibility in the use of different fuel streams (biomass, WDF, etc) In combination with CCS, this option can become CO₂ negative Potential to become more cost efficient under specific circumstances e.g governmental subsidies, high availability of biomass 			 H U m Source 	igh costs ncertainties about the development of arkets for biomass ocial acceptance of co-firing "polluted" omass	

Further implementation of co-firing biomass in coal power plants is highly depending on the development of markets and prices for biomass

12. Biomass conventional co-firing					
Technology	Co-firing conventional biomass in		Category	Renewables	
	Coal power plants	imum of 20%	Sector / Application	power sector	
Definition of	Definition of Biomass (bio oil) co-firing in		Techn. Maturity 2006	Mature	
(Combined Cycle gas turbines, Turbines)		nes, Steam	CO ₂ emission reduction rate	~90% (over complete life-cycle)	
Evaluation of Technology					
	Pros		Cons		
 High reduction potential Proven and mature technology Already applied in many (all?) coal fired power plants In combination with CCS, this option can become CO₂ negative Limited ap ~20% of e Uncertaint prices for High costs Risk of pri demand in 			plication potential d nergy output ies about the develo biomass of clean biomass, f ce increase of conve transportation	ue to max cofiring percentage biomass: opment of international markets and free from chlorides, metals entional biomass, due to increased	
Source: ECN, expert interviews, Arthur D, Little analysis					

A1	Description of Environmental Images 2030			
A2	Reference emissions 2030 for CO2, NOx and SO2			
A3	Detailed overview of solution mixes			
	A3.1	A3.1 Solution mix for CO ₂		
	A3.2 Solution mix for NO _X			
	A3.3	Solution mix for SO ₂		
	A3.4	Solution mix for waste		
	A3.5 Solution mix for water			
A4	List of experts and principle sources			

Direct implications of the HPI include significant investments in SCR for the power sector, manufacturing industry and refineries

	Implications of High Performance Image					
	Stakeholders		Expected implications	Investment 2030	Operating cost ¹⁾ 2030	
			1. Implementation of current ETS legislation till 2010			
	Direct implications (NO _x Emission Trading Scheme (NO _x -ETS)	 Fuel shift power generation – From coal to Nuclear/Wind (4000MW) 			
			3. Ultra Low NO _X burners in power sector and industry, excl. refineries within ETS	1-3 €/kW (new) 5-10 €/kW (retrofit)	minor	
in			4. Further optimisation of SCR on coal, large gas power plants and process installations, within ETS	50-100 €/kW (retrofit on coa 10-50 €/kW (retrofit on gas²	⁽²⁾) 0,4 €/MWh (coal)	
			5. SCR on refineries within ETS	х о	,	
		Other industry	 Low NO_X Burners on industry boilers (non ETS) 	~5 €/kW (new) ~15 €/kW (retrofit)	minor	
			 Extra SCR on stationary gas engines in industry (non ETS) 	100-250 €/kW (retrofit on gas	s) 0,6 €/MWh (gas)	
1)) Operating costs excluding cost of capital					

2) Investment costs of SCR depend highly on flue gas volume, sulfur and dust content (fuel type) and retrofitting complexit Source: ECN, EU IPPC BREF, IIASA, Arthur D. Little analysis and estimates

Key enabling factors for implementation of NO_X reduction measures are increased RD&D and continuous adaptation of regulatory requirements

Enabling actions					
Technology (group)	Short term (now-2010)	Medium term (2010-2020)	Long-term (2020-2030)		
 3./6. Ultra Low NO_x burners (ULNBs) 4./5./7. (Further optimisation of) Selective Catalytic Reduction (SCR) 	 Invest Research, Development a Ensure regulatory requirements Maintain emission trading system the market 	and Dissemination (RD&D) to r continually adapt to best availa ms for NO _X emissions to drive	reduce costs of technology able technology cost efficient solutions into		

Implementation of current emission standards will lead to significant NO_{X} emission reductions by 2010

1. Imple	II 2010			
Technology	 Implementation of current NO_x-ETS legislation till 2010 Implementation of NO_x-ETS standards, corresponding to emission standards of 40 g/GJ by 2010 Measures include "classical" Low NO_x burners on coal and gas combustion installations and SCR on large coal power plants Measures are mostly implemented by 2007 	Category	Emission standards within emission trading scheme (ETS)	
		Sector / Application	power sector and Industry	
Definition of Technology		Techn. Maturity 2006	Mature	
		NO _x emission rate	Emission standards: 68g/GJ by 2005; 40g/GJ by 2010	
	Evaluation	of Technology		
	Pros	Cons		
 Not applicable (measures are implemented between 2004 and 2007) 		 Not applicable (measures are implemented between 2004 and 2007) 		
ource: ECN, Expert interviews, Arthur D. Little analysis				

After 2010, Ultra Low NO_X burners are expected to bring improved emission reduction rates -- compared to classical LNBs -- at low costs

3./6. Ultra Low NO _X burners (ULNBs)						
Technology	Ultra Low NO _x burners for gas and coal	Category	Primary measure / combustion modification			
Definition of Technology	 Low NO_x burners (LNBs) modify the means of introducing air and fuel to delay the mixing, reduce the availability of oxygen and reduce peak flame temperature ULNBs are further improved versions of "classical" Low NO_x burners 	Sector / Application	power sector and Industry			
		Techn. Maturity 2006	Mature			
		NO _x emission reduction rate	2030: 60% (coal) – 80% (gas) compared to 30-55% for "classical 2006" LNB's			
Evaluation of Technology						
Pros			Cons			
 Normal LNB's are currently state-of-the-art and implemented in many sectors High Cost Efficiency For new installations, the additional investment for an (ultra) low NO_x burner compared classical burner can be considered as negligible For retrofits, eventual modifications on the installation have to be taken into account, which are very often plant specific and thus not quantifiable in general 			 Space restrictions make LNB less appropriate for retrofit situations compared to newly build installations Medium Reduction rate 			

LNB can be used in combination with other primary and secondary measures

Source: ECN, Expert interviews, Arthur D. Little analysis

Optimised Selective Catalytic Reduction systems are expected to offer NO_X reduction rates of 95% by 2030 against a medium cost efficiency

4./5./7. (Further optimisation of) Selective Catalytic Reduction (SCR)

Technology Definition of Technology	Selective Catalytic Reduction of nitrogen oxides in exhaust gases from combustion installations Catalytic process based on the selective reduction of nitrogen oxides with ammonia or urea in the presence of a catalyst	Category	Secondary measure / Flue gas cleaning
		Sector / Application	power sector and Industry
		Techn. Maturity 2006	Mature
		NO _x emission reduction rate	80-95% (2005)_ 95% (2030 further optimised)

Evaluation of Technology				
Pros	Cons			
 High Reduction rate (80-95%) SCR can be used on many fuels (eg oil, gas, coal) 	 Medium Cost Efficiency Retrofitting SCR could lead to increased complexity (eg. space restrictions) of installation and consequently increased investment cost Risk of ammonia slippage (release emission to atmosphere), in case of too high injection rate of ammonia, commonly used reagent 			
Source: ECN, Expert interviews, Arthur D. Little analysis				

A1	Description of Environmental Images 2030			
A2	Reference emissions 2030 for CO2, NOx and SO2			
A3	Detailed overview of solution mixes			
	A3.1	Solution mix for CO ₂		
	A3.2	Solution mix for NO _X		
	A3.3	Solution mix for SO ₂		
	A3.4	Solution mix for waste		
	A3.5	Solution mix for water		
A4	List of experts and principle sources			

Implementation of measures associated with the HPI are expected to lead to increased costs for both the power and the manufacturing industry

	Implications of High Performance Image				
Stake	eholders	Expected implications	Investment (2020-2030)	Operating cost ¹⁾ (2020-2030)	
	Power sector	 Fuel Shifts (new coal power plants to Nuclear/Wind/Gas) (4000MW) Optimization of FGD on existing coal power plants 	 4 - 5 €/kW (coal)	 0,5 €/kg SO ₂	
Direct impli- cations	Manufacturing Industry	 FGD on carbon black production FGD on regenerator catcracker in refineries Fuel shift oil to gas in refinery furnaces Optimisation of amine treatment of refinery fuel gas FGD in other industries (e.g. aluminum glass, food, construction materials) 	3 – 4 mln €/sector 6 – 8 mln €/refinery minor minor 75-250 €/ton aluminum produced	0,5 €/kg SO ₂ 2 €/kg SO ₂ (additional cost gas) 2 €/kg SO ₂ 2 €/kg SO ₂ 2 €/kg SO ₂	
1) Operating costs excluding cost of capital					

Source: ECN, EU IPPC BREF, Arthur D. Little analysis and estimates

Main enabling factors for implementation of SO₂ reduction are increased RD&D and regulatory measures

Enabling ac	Enabling actions				
Technology (group)	Short term (now-2010)	Medium term (2010-2020)	Long-term (2020-2030)		
 Fuel Shifts Power 2/3/4/7. Flue gas desulphuri- sation (FGD) 	Ensure regulatory requirements continually adapt to best available technology				
 5. Fuel shift refineries 6. Optimisation amine treatment refineries 	 Invest in RD&D to reduce costs o Ensure Regulatory/ fiscal measure 	f technology es to internalise external c	osts into fuels		

Flue gas desulphurisation is a highly mature end-of pipe technology with a medium cost efficiency

2/3/4/7. Flue gas desulphurisation (FGD)					
			,		
Technology	TechnologyFlue gas Desulphurisation (FGD)Definition of TechnologyDesulphurisation of flue gases via Lime scrubbing, Sodium scrubbing, or Seawater scrubbing (so-called non- regenerative, wet processes)		Category	Secondary measure	
			Sector / Application	power sector and Industry	
Definition of			Techn. Maturity 2006	Highly mature	
rechnology			SO ₂ emission reduction rate	85- 90% (retrofit) 98% (new)	
		Evaluation	of Technology		
	Pros		Cons		
 High Reduction rate (85-90%) FGD can be used on many fuels (e.g. oil, coal) Conversion of SO₂ does not create any secondary pollution components Optimisation of lime scrubbing can lead to reduction rates up to 95% 		ost Efficiency er waster treatment consumption	required if wet processes adopted		
Source: ECN, EU IPPC BREF, Arthur D. Little analysis					

Cost Efficiency of oil to gas fuel shift at refineries are highly depending on additional costs of gas compared to residual fuels

5. Fuel shift (oil to gas) in refinery furnaces

Technology Fuel shift – Oil to gas (Refine furnaces)	Fuel shift – Oil to gas (Refineries,	Category	Primary measure
	Turnaces)	Sector / Application	Refineries
Definition of Technology	fuel shift from on to gas for reinery furnace fuel. Currently furnaces of oil refineries are using sulphurous residual oil and refinery gas as a fuel. As part of a covenant, refineries committed to implement this fuel shift from 2010 onwards	Techn. Maturity 2006	Mature
		SO ₂ emission reduction rate	100%

Evaluation of Technology			
Pros	Cons		
 Very high reduction rate (100%) No large investments expected, most existing furnaces can burn both oil and gas Increased reduction of PM emission 	 Low cost efficiency Cost Efficiency highly depending on additional costs of gas compared to residual fuels Small investments and adaptation of installation required (eg. installing gas pipes) 		
Source: ECN, Expert interviews, Arthur D. Little analys	sis		

Amine treatment of refinery fuel gas offers the potential to be further optimised to an emission reduction rate of 99,8%

6. Optimisation of amine treatment of refinery fuel gas

TechnologyOptimisation of amine treatment of refinery fuel gasCategor Sector ApplicaDefinition of TechnologyFurther optimisation of existing amine treatment processes of refinery fuel gas, eg. by increase of capacity, increase of pressure at which gases are guided through treatment system)Tech Maturity	Optimisation of amine treatment of	Category	Primary measure
	Sector / Application	Refineries	
	treatment processes of refinery fuel gas, eg. by increase of capacity, increase of pressure at which gases are guided through treatment system)	Techn. Maturity 2006	Highly mature
		SO ₂ emission reduction rate)	Increase of 99% to 99,8%

Evaluation of Technology			
Pros	Cons		
 High Reduction rate (80-90%) Optimisation or expansion of existing measures No large investments required 	 Low Cost Efficiency Increase of energy consumption in case of increased process pressure 		
Source: ECN, Expert interviews, Arthur D. Little analys	sis		

A1	Description of Environmental Images 2030			
A2	Refe	Reference emissions 2030 for CO2, NOx and SO2		
A3	Deta	Detailed overview of solution mixes		
	A3.1	A3.1 Solution mix for CO ₂ A3.2 Solution mix for NO _X		
	A3.2			
	A3.3	A3.3 Solution mix for SO ₂		
	A3.4	A3.4 Solution mix for waste		
	A3.5 Solution mix for water			
A4	List of experts and principle sources			

Overall recovery ratio can be improved through various options with comparable cost efficiencies

Options to increase recovery ratio			
Stream	Available options		Costs/ton ¹⁾
Organic	 MBT (biofermentation) / production of biofuel (monostreated MBT (biofermentation) / production of biofuel (mixed streated High-efficiency Waste-to-Energy 	am ²⁾) eam ³⁾)	€220 - 240 €290 - 310 €275 - 290
Plastics	 Source separation (monostream²⁾) Post separation (mixed stream) High-efficiency Waste-to-Energy 		€275 - 308 ⁴⁾ €258 - 380 ⁵⁾ €275 - 290
Paper	Increased separation at source (collection)High-efficiency Waste-to-Energy		p.m. ⁶⁾ € 275 - 290
All waste materials	 High-efficiency Waste-to-Energy 		€275 - 290
 Total full cost for processing of waste stream, including collection, separation and pre-treatment of waste, excluding subsidies Monostream collection: separate collection of one waste stream from consumer (e.g. biowaste) Mixed stream collection comprises non-separated collection of all waste streams (i.e. gray bag), after which central mechanical separation is required to separate the different waste streams 			

4) Cost difference depending on collection method; either collection via "combi-bag per individual consumer" or "collection points per district"
5) Depending on developments of recycling markets for separated waste streams
6) Under specific market circumstances possible without significant additional cost per ton

Source: Senternovem, VROM, TNO, Cyclus, Expert interviews, Arthur D. Little analysis and estimates

Waste A3.4

Implementation of the different options is highly depending on the further development of legal requirements

Enabling actions					
Technology (group)	Short term (now-2010)	Medium term (2010-2020)	Long term (2020-2030)		
1.& 5. MBT (biofermentation) / production of biofuel	 Maintain/ extend separated collection of organic waste (biowaste) Develop legal framework requiring higher recovery ratio of organic waste stream Legal (EU) framework requiring increased use of biofuels for transport Develop official "Biowaste Directive", e.g. including special provision for biowaste residues treatment 				
2. Plastics post separation	 Develop markets for separated plastic waste streams Develop legal framework requiring higher recovery ratio for plastics or specific recycling targets for plastic waste 				
3. High-efficiency Waste-to-Energy	 Legal (EU) classification of high efficiency waste incineration as 'recovery' Develop legal framework requiring higher recovery ratio 				
4. Plastics separation at source	 Develop collection infrastructure (collection points) Develop legal framework requiring higher recovery ratio for plastics Information campaign to educate public 				
		Source: A	Arthur D Little interviews and analysis		

Mechanical Biological Treatment (MBT) of the organic fraction offers a cost efficient and environmental beneficial solution if collected separately

1. & 5.	MBT / production of biofuel		
Technology	Producing bioethanol or biogas from organic waste through fermentation	Category	Recovery
	 After pre-treatment and processing, 	Stream / Application	Organic
Definition of Technology	 Fermentation gas or distillate of fermentation gas (i.e. bioethanol) can 	Techn. Maturity 2006	Mature: Bio-fermentation Growing: Biofuel
 Many variations in processes exist 			
	Evaluation	of Technology	
	Pros	Cons	
 CO₂ emission reduction and associated reduction of consumption of coal / gas Attractive cost-efficiency if collected separately (mono stream collection) Because of reduced role of economies of scale, MBT is well suited for scarcely populated areas 		 Preprocessing recollection, i.e. sewaste fractions No integral solution organic part of worganic part of worganic stream 	equired in case of mixed stream eparation of organic fraction from other tion for consumer waste, since non- vaste has to be treated differently in case collection
			Source: Expert interviews, Arthur D. Little analys

If markets for recycled waste streams develop, post separation becomes a cost efficient solution for the recycling of plastic waste streams

2. Plast	tics post separation		
Technology	Processed waste separation including	Category	Recycle / Recovery
	post separation	Stream /	Plastics, Paper
	Upgrade of existing separation installations with an additional stop	Application	
Definition of	 Recovery of plastics (PET, PE, PP) and 	Maturity 2006	Mature
Technology	 paper from waste, PET to be recycled and rest to be used as waste derived fuel (WDF) in existing coal fired power plants Substitute for waste separation at source 		
	Evaluation	of Technology	
	Pros		Cons
 Co-firing WDF in coal power plants results in higher energy efficiency compared to (high efficiency) waste incineration Recycling of PET instead and of high efficiency incineration of plastics Significant environmental performance compared to Watto-Energy (CO₂ emission reduction) 		rgy Uncerta WDF. Co WDF co of Current in NL, w plants r	in development of Dutch market for plastic Currently, only a German market exist for o-firing (brown coal, old coal power plants) ly only two existing separation installations which can be easily adapted. Additional need to be build greenfield.
			Source: Expert interviews, Arthur D. Little analysis

Although high-efficiency Waste-to-Energy offers an integral and cost efficient solution, it is not the most environmentally beneficial

3. High	3. High-efficiency Waste-to-Energy							
		<u> </u>						
Technology	Efficiency improvement	of WtE plants	Category	Waste incineration (high efficiency)				
	Upgrade of existing W	/tE installations	Stream / Application	All streams				
Definition of	or newly build WtE plant beat (steam)		Techn. Maturity 2006	Mature				
rechnology	 Improvement of net energy required for <i>Recovery</i> ~22% (2004) to 32% (status; from (HPI 2030)						
	Evaluation of Technology							
	Pros	Cons						
 Currently an economic viable solution in case of governmental subsidy Associated reduction of consumption of coal / gas Consumer friendly, i.e. no additional effort required from consumers Integral solution for waste 		 Uncertainty all for sustainable Increased em (eg production Waste-production Waste-production currently prim material (e.g.) Today not yet 	bout long term availate e energy production issions of CO ₂ and n of biofuel/biogas, p at of incineration incl arily disposed to lar for embankments a classified as 'recov	ability of governmental incentive structure NO _x compared to some other solutions bost separation) udes (polluted) bottom ash, which is ad fills. Re-use of bottom ash as build nd road foundation) is an option. ery' by EU				
				Source: Expert interviews, Arthur D. Little analysis				

Plastics separation at source leads to additional recycling of PET, yet is considered less consumer-friendly compared to other alternatives

4. Plastics separation at source							
Technology	Plastic waste separation at	source (by	Category	Recycle / Recovery			
	consumers and commercia	II/ Service)	Sector /	Plastics			
	Collection at source (subs)	stitute for post-	Tachr				
Definition of	separation)	-f relaction	Maturity 2006	Mature			
Technology	 Separation and recovery of plastics (PET, PE, PP) from waste, PET to be recycled and rest to be treated in Wast to Energy plant 						
		Evaluation	of Technology				
Pros		Cons					
 Associated reduction of CO₂ emissions and consumption of coal / gas Higher recycling fraction versus incineration in WtE 		 Costly solutions, due to required new infrastructure Less consumer friendly: additional effort required from consumers (manual waste separation, taking separated waste to collection points) No level playing field for all packaging solutions Additional post-separation installation required to further split the separated plastic waste stream May require additional transport (increased CO₂ and NO₂ emissions) 					
				Source: Expert interviews, Arthur D. Little analysis			

A1	Description of Environmental Images 2030				
A2	Refe	Reference emissions 2030 for CO2, NOx and SO2			
A3	Deta	Detailed overview of solution mixes			
	A3.1	Solution mix for CO ₂			
	A3.2	A3.2 Solution mix for NO _X			
	A3.3	A3.3 Solution mix for SO ₂			
	A3.4	A3.4 Solution mix for waste			
	A3.5 Solution mix for water				
A4	List	List of experts and principle sources			

Measures to improve purification efficiency are optimization of existing installations or membrane bioreactors in case of renewed installations

	Measure	Purification Efficiency	Investment ¹⁾ 2030	Operat. Cost ^{1,2)} 2030, annual	Expl. Cost ^{1,2)} 2030, annual		
cing ttions	0 Full implementation of conventional N and P removal	Measures were enforced by Dutch law (AMvB Lozingsbesluit Afvalwater, 1996) and are expected to be fully implemented by 200			ingsbesluit ented by 2008		
Exist installa	1 Optimisation of existing conventional waste water treatment installations ³⁾	~90% (N) ~95% (P)	50-150 €/p.e.	3-5 €/p.e.	7-20 €/p.e. (NL av. 11€/pe; 26 mln pe in NL)		
wed tions	2 New membrane bioreactor (MBR)	90-95 % (N) 95-99 % (P)	150-400 ⁴⁾ €/p.e.	25-45 ⁴⁾ €/p.e.			
3 New installation with optimised conventional WWT							
(2) Optimisation of existing WWT installations is sufficient to meet the HPI, although in case of replacement of existing installations, (3) new MBR could offer an improved and more cost efficient solution							

3) Assuming measure (0) "Full implementation of conventional P and N removal" is in place
 4) Assuming conservative reduction of 10% in investment and operational cost by 2020/30 compared to 2005, due to learning curve and scale effect

Source: STOWA, Arthur D. Little analysis and estimates

Arthur D Little

Water

Water A3.5

Main enabling factor for implementation of improved purification efficiency is more stringent legal requirements

Enabling ac	tions		
Technology (group)	Short term (now-2010)	Medium term (2010-2020)	Long-term (2020-2030)
1. Optimisation of conventional WWT installations	Ensure enforcement of comparable efforts from other sources categories, especially agriculture		
2. New membrane bioreactors (MBR)	Develop legal framework requiring higher efficiency	 Invest RD&D to improve process Demonstrate large scale 	e energy efficiency of MBR e MBR

Water /

In the coming years, conventional N- and P-removal processes will be installed at all waste water treatment installations

0. Full implementation of conventional N and P removal

Technology	Implementation of conventional waste water treatment process (activated sludge system) at		Category	Secondary measure
	all treatment installations		Sector /	Waste water treatment
	Adoption of conventional N- an	d P removal	Application	
Definition of	processes (activated sludge sy waste water treatment installat	ions	Techn. Maturity 2006	Mature/Ageing
Technology	 By 2004, 60% of urban WW1 c equipped with N-removal, 87% Measures were enforced by Du 	capacity was 6 with P-removal witch low (AM/P) efficiency	~80% (Nitrogen) ~85% (Phosphorus)	
	Lozingsbesluit Stedelijk Afvalwater, 1996) a are expected to be fully implemented by 20			
		Evaluation	of Technology	
	Pros			Cons
Not application	ble	Not applic	able	
	voort interviewe Arthur D. Little ar	alveie		

Water

Adding two steps to the conventional WWT process offers a cost efficient solution for existing installations

1. Optimisation of conventional waste water treatment

Technology	Optimisation of conventional waste water treatment process (activated sludge system) by	Category	Secondary measure
	coagulation Adding two process steps to the	Sector / Application	Waste water treatment
Definition of Technology	conventional activated sludge system Biofiltration after adding carbon (N removal)	Techn. Maturity 2006	Mature
	Inline coagulation and filtration after adding metal salt (P removal)	Purification efficiency	~90% (Nitrogen) ~95% (Phosphorus)

Evaluation of Technology					
Pros	Cons				
 Widely proven and available technology Associated removal of other polluting elements (eg. heavy metals) Low uncertainty about cost, limited investments required 	Maximum purification efficiency is lower compared to membrane bioreactor				
Source: STOWA Expert interviews Arthur D. Little analysis					

If further improved, new membrane bioreactors would offer higher purification efficiency at exploitation costs comparable to new conventional installations

2. New	membrane bioreactor (MBR)				
Technology New Membrane bioreactor instead of an		Category	Secondary measure		
		Sector / Application	Waste water treatment		
Definition of	Membrane bioreactor combines an activated sludge process with a membrane filtration step (instead of conventional sedimentation)	Techn. Maturity 2006	Growing		
recimology		Purification efficiency	2006: 90% N and 95% P 2030: 95% N and 99% P		
	Evaluation	of Technology			
	Pros		Cons		
 High theoret forms an abs Associated r metals, micro Space savin and absence conventiona Growing tecl (e.g. reduced large scale absence) 	ical purification efficiency, since membrane solute barrier for microorganisms and particles emoval of other polluting elements (eg. corganisms, viruses, medicines) g for installation due to smaller tank volumes e of large sedimentation tanks (needed in system nology, so further cost reductions expected d cost of membranes in case of international idoption of MBR)	 Costs of curre conventional of MBR (15-3 costly membre) The effluent q five years ago Large scale M equivalents) 	ently existing MBRs are higher compared to installations due to high energy consumption 5% higher compared to conventional) and anes juality of MBR falls short of the expectations of b, e.g. for micro-pollutants. IBR not yet proven (above 200k population		

Source: STOWA, Expert interviews, Arthur D. Little analysis

Arthur D Little

Water

A1	Description of Environmental Images 2030				
A2	Reference emissions 2030 for CO2, NOx and SO2				
A3	Deta	ailed overview of solution mixes			
	A3.1	Solution mix for CO ₂			
	A3.2	Solution mix for NO _X			
	A3.3	3 Solution mix for SO ₂			
	A3.4	4 Solution mix for waste			
	A3.5	Solution mix for water			

List of experts and principle sources

Arthur D Little

A4

A total of 16 national and international experts were interviewed to review and quantify the Environmental Images 2030

Experts interviewed for quantification of Images

Theme	Category	Organization	Name	Title/Function
Climate Change	NL Institute	RIVM	Bert Metz	Responsible Fourth Assessment Report IPCC
Climate Change	International	UNFCCC	Yvo de Boer	Executive Secretary of the UNFCCC
Climate Change	Industry	Shell International	David Hone	Corporate Affairs
Air Quality	EU	DG Environment	Michel Sponar	EU Air Thematic Strategy, Project Office
Air Quality	International	UNICE	Suzie Baverstock	Chairman of the UNICE Air Quality Working Group
Air Quality	International	UK government	Martin Williams	Chairman UNECE-group Gothenburg protocol
Air Quality	International	WHO	Michal Krzyzanowski	WHO European Centre for Environment, Air Quality and Health
Water Quality	EU	DG Environment	Peter Gammeltoft	Directorate Water, Chemicals & Cohesion, Environment DG
Water Quality	Industry	Suez	Jacgues Labre	Director International relations, Suez Environment
Water Quality	Industry	Vitens, Apeldoorn	Peter Salverda	Manager Water Chain
Water Quality	Public NL	Unie van Waterschappen	Eric Kraaij	Chairman Water Policy
Water Quality	Industry	FNLI/Campina	Jaap Petraeus	Environmental Policy
Waste	Public NL	Senter Novem	Herman Huisman	Senior Advisor Waste Management
Waste	EU	DG Environment	Paul Speight	Directorate Waste
Waste	Industry	Biffa Waste Services	Peter Jones	Director External Relations
Waste	Industry	SITA	Freek van Eijk	Director Strategy

A large number of experts from VROM, ECN, STOWA were also consulted as part of this study, in addition to Arthur D. Little's internal global network

Other experts involved in the study

Theme	Туре	Organization	Name	Title/Function
General	NL Institute	MNP	Annemarie van Wezel	Senior policy researcher
General	NL Institute	СРВ	Ruud de Mooij	Programme manager Welfare State
General	NL Institute	ECN	Remco Ybema	Unit Manager Dept. of Policy studies
General	NGO	Stichting Natuur en Milieu	Ron Wit	Teammanager Climate and Economy
Climate Change	Public NL	Ministry of VROM	Frans Vlieg	Member management team of Climate change and Industry Directorate
Climate Change	Public NL	Ministry of VROM	Marcel Berk	International Climate Policy
Climate Change	NL Institute	ECN	Ton van Dril	Dept of policy studies
Climate Change	EU	EC Environment DG	Matti Vainio	Head of Energy and Environment Unit
Air Quality	Public NL	Ministry of VROM	Marjan van Giezen	Head of clusters intermediairs
Air Quality	Public NL	Ministry of VROM	Johan Sliggers	Co-ordinator, Acidification and Continental Air Pollution
Air Quality	NL Institute	ECN	Pieter Kroon	Dept of policy studies
Water Quality	Public NL	Ministry of VROM	Ger Ardon	Head of Water Department
Water Quality	Public NL	Ministry of LNV	Paul Thewissen	Programme manager Innovation
Water Quality	NL Institute	STOWA	Cora Uijterlinde	Research manager
Waste	Public NL	Ministry of VROM	Robbert Thijssen	Waste expert, Chemicals, Waste, Radioation Protection Directorate
Waste	Public NL	Ministry of VROM	Titia van Leeuwen	Deputy Director of Chemicals, Waste, Radioation Protection Directorate

The study involved the review of a large number of national and international publications

Principal references and sources

СРВ	Four Futures of Europe	2003
CPB, MNP, RPB	Welvaart en Leefomgeving, een scenariostudie voor Nederland in 2040	2006
ECN, MNP	Referentieramingen energie en emissies 2005-2020	2005
ECN, MNP	Optiedocument energie en emissies 2010/2020	2006
European Commission	Integrated Pollution Prevention and Control, Reference Document on Best Available Techniques	2001-2007
European Commission	Thematic Strategy on air pollution	2005
European Commission	Thematic Strategy on prevention and recycling of waste	2005
EEA	European environment outlook	2005
IEA	World Energy Outlook 2006	2006
IIASA	A final set of scenarios for the Clean Air for Europe Programme (scenario analysis report nr. 6)	2005
MNP	Haalbaarheid nationale emissieplafonds in 2010	2006
MNP	Consequences for the Netherlands of the EU thematic strategy on air pollution	2005
MNP	Milieubalans 2006	2006
MNP	Milieu- en Natuurcompendium	2006
Ministry of VROM	Nationaal Milieubeleidsplan 4, Een wereld en een wil	2001
SenterNovem	Development of the Dutch waste market	2006
STOWA	Quick scan kostenscenario's vergaande zuivering RWZI en KRW	2006
STOWA	Onderzoek MBR Varsseveld	2006
WBCSD	Pathways to 2050, energy and climate change	2004