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Abstract

Deep convective clouds, such as Towering Cumulus (TCu) and Cumulonimbus
(Cb) clouds, may pose a serious risk to aviation. For a responsible replacement
of human observers at airport weather stations in the Netherlands by automa-
ted observation systems of present weather, a Probability Of Detection (POD)
of at least 80 % and a False Alarm Rate (FAR) of no more than 20 % is required.
Therefore, the POD (58 %) and FAR (70 %) of the present KNMI automated
radar-based Cb/TCu cloud detection method are not considered satisfactory.
In this study, satellite derived cloud physical properties and High Resolution
reflectances in the Visible (HRV) as well as weather radar data are used to de-
velop a new Cb/TCu cloud detection method. The cloud physical properties
are derived from the visible and near-infrared channels of the Spinning En-
hanced Visible and InfraRed Imager (SEVIRI) onboard a Meteosat Second Ge-
neration (MSG) satellite. The detection method is constructed for a MSG box
area around Schiphol airport for the daytime summer period. METeorologi-
cal Aerodrome Reports (METAR) of Cb and TCu clouds are used as ’ground
truth’. The Cb/TCu cloud detection method is performed in two steps. First, a
Convective Cloud Mask (CCM) is constructed to produce a hazard map. This
map includes pixels which represent potential convective cloud pixels based
on a thresholding technique. For the hazard map, the level of risk, which indi-
cates the probability of presence of Cb/TCu clouds at and in the vicinity of the
airport, is determined using a logistic regression model. Predictors for the mo-
del have been derived from the cloud physical properties, HRV reflectance and
weather radar data. The frequent selection of the HRV derived predictors in the
forward stepwise selection method revealed the importance of high resolution
satellite data. Therefore, a cloud optical thickness has been derived from the
HRV reflectance. The CCM shows a two-third decrease for the non-events (no
Cb/TCu clouds), while over 95 % of the yes-events (Cb/TCu clouds) remain.
The predicted probabilities from the logistic regression model show good Re-
liability and Resolution and positive skill over sample climatology. Using the
Critical Success Index (CSI) and the Bias, a probability threshold is determined
to convert predicted probabilities into predicted group memberships. Combi-
ning the results from the CCM with the results from the final logistic regression
model, a POD of 65.2 % and a FAR of 35.4 % are obtained for a maximum CSI
and a bias of no more than 5 %. These verification scores show a substantial
improvement with respect to the scores from the present automated Cb/TCu
cloud detection method.
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1st Chapter

INTRODUCTION

Convective clouds, such as the Towering Cumulus (TCu) and Cumulonimbus
clouds (Cb), can be striking features in the sky, but may also produce hazar-
dous weather. Especially deep convection, such as a mature cumulonimbus
cloud, is accompanied by rapidly changing weather on different spatial and
temporal scales. Weather associated with convective clouds consists of preci-
pitation in the form of intense rain showers, snow, hail or graupel. Also strong
winds and lightning may be present. Turbulence, strong wind shears, reduced
visibility, heavy precipitation and lightning, and the onset of ice on airplanes
within and around convective clouds can be a threat to aviation. At the same
time, the hazardous weather increases annual costs in the aviation industry
due to time and fuel loss that arise from delayed, canceled and rerouted flights
as well as accidents. Furthermore, the presence of hazardous weather can be re-
levant to ground transport, tourism, the energy supply industry, the construc-
tion industry and farmers. Heavy precipitation can lead to flash flood events
causing destruction to homes and businesses and occasionally also fatalities.

The need to accurately forecast, detect and monitor hazardous weather pheno-
mena has led to the development of numereous methods for forecasting, detec-
tion and monitoring of convective initiation, clouds and precipitation. Current
techniques for detection and monitoring of convective clouds and the nowcas-
ting (forecasting up to 2-6 hours) of severe weather are based on near real-time
information given by radar and satellite. Numerical weather prediction mo-
dels have problems forecasting the onset of convection due to inaccurate repre-
sentations of the atmospheric state and the dynamic and micro-physical state
of clouds on sub-grid (small scale) resolution. Radars can be used to detect
convective precipitation, but the spatial coverage of radar networks is usually
limited. Satellites can be used to detect convective clouds before the onset of
precipitation and in areas of limited radar coverage. Various cloud characte-
ristics can be identified from visible and infrared satellite images using multi-
spectral techniques. Several methods use (dynamic) thresholds in visible and
(combined) infrared satellite channels for cloud classification and rainfall es-
timations, but also more advanced pattern recognition techniques have been
developed. Less methods use satellite derived cloud physical properties to de-
tect convective clouds and estimate convective rainfall.

1



1. INTRODUCTION

The ability to detect and monitor convective clouds increases with increasing
satellite resolution both in space and time. In 2002, the first Meteosat Second
Generation (MSG) satellite has been launched into space. The onboard Spin-
ning Enhanced Visible and InfraRed Imager (SEVIRI) has an increased time
resolution of 15 minutes compared to the 30 minutes of the older generations
of satellites. The horizontal resolution for the (near) infrared channels increa-
sed from 5 km to 3 km at the sub-satellite point. Also the number of spectral
channels has increased and a high resolution visible channel with a horizontal
resolution of 1 km is included, which was 2.5 km for the older generation. The
EUropean organization for the exploitation of METeorological SATellites (EU-
METSAT) has initiated the Satellite Application Facility on Climate Monitoring
(SAF-CM) to retrieve cloud physical properties, such as the optical thickness
and particle size, for climate trend watching. The cloud physical properties are
derived from visible and near-infrared cloud reflectances and infrared cloud
top brightness temperatures using SEVIRI observations, a Cloud Physical Pro-
perty (CPP) algorithm and Radiative Transfer Model (RTM) simulations.

At the Royal Netherlands Meteorological Institute (KNMI), the automated ob-
servation system of present weather (AUTO METAR) uses a radar algorithm
adopted from Météo-France to detect towering cumulus and cumulonimbus
clouds. It is based on radar reflectivity thresholds and area size of the preci-
pitation echoe, as well as on information from a lightning detection network
(Wauben et al., 2006). The aim of the KNMI is to fully automize present wea-
ther observations at most weather stations in the Netherlands. However, for a
responsable replacement of human observers at Dutch airports by an automa-
ted observation system, the Probability Of Detection (POD) of Cb clouds (58%)
and the large False Alarm Rate (FAR) (70%) of the present radar algorithm are
not considered to be satisfying. A probability of detection of at least 80% and
false alarm rate of no more than 20% are required. Combining weather ra-
dar data with satellite data is expected to improve the detection of convective
clouds and to decrease false alarms. Also, the increased time and spatial reso-
lution of SEVIRI opened new possibilities in this research area. The objective
of this thesis research is to develop an automated Cb/TCu cloud detection me-
thod using MSG-SEVIRI derived cloud physical properties and reflectance in
the visible. The main research question is as follows:

How can satellite derived cloud physical properties and reflectances contri-
bute to an improved automated detection method of towering cumulus and
cumulonimbus clouds?

An improvement of the convective cloud detection method over the present
radar-based method at the KNMI will be measured in terms of probability of
detection and false alarm rate. The cloud physical properties and reflectance in
the visible are related to the presence of convective clouds in satellite images in
a physical and statistical sence. Supplementary to the main research question,
the following sub-questions can be addressed:

How can cloud physical properties and reflectance in the visible be related in a
physical sense to convective clouds to determine hazard?

How can cloud physical properties and reflectance in the visible be related in a
statistical sense to convective clouds to determine level of risk?

2



Hazard is the potential to cause harm. Convective clouds are considered to
form a hazard to aviation when present at and within the surroundings of the
airport. The cloud physical properties and the reflectance in the visible are used
to differentiate between convective and non-convective clouds within a satel-
lite image. Convective clouds will pose a serious risk to aviation when they
have grown into severe convective clouds (Cb/TCu). For hazardous cloud
areas within the satellite image, the risk of the clouds being Cb/TCu clouds
is determined by relating cloud physical properties and reflectance to convec-
tive clouds in a statistical manner. Therefore, risk can be understood as the
likelihood of harm and is expressed in terms of probability.

The structure of this thesis is as follows. In Chapter 2 background informa-
tion is given on the formation and characteristics of convective clouds and
associated weather as well as the basics of radiative transfer in a cloudy at-
mosphere. Furthermore, MSG and onboard SEVIRI will be treated followed
by a small section on radar principles. In Chapter 3 a brief overview of his-
torical and state-of-the art methods that use satellite data to detect and moni-
tor convective initiation, convective clouds and convective precipitation will
be given. Chapter 4 presents the MSG-SEVIRI cloud physical properties and
reflectance dataset and METeorological Aerodrome Reports (METAR) used in
this research. Furthermore, the two steps within the automated Cb/TCu cloud
detection method, a convective cloud mask and logistic regression, are presen-
ted. In Chapter 5 the results of the Cb/TCu cloud detection method will be
shown. A discussion and conclusion are provided for in Chapter 6.
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2nd Chapter

BACKGROUND

2.1 CONVECTIVE CLOUDS

Not much was known about the structure of clouds until after World War II
instrumented aircrafts for atmospheric measurements were used. In the late
1940s there was the Thunderstorm Project in Florida and Ohio, which was
the first project to do quantitative measurements of precipitating convective
clouds. Byers and Braham (1949) published an article describing a typical thun-
derstorm (principal diurnal convection over land) consisting of a number of
individual convective cells, each evolving through a life cycle that has three
stages: the cumulus stage, the mature stage and the dissipating stage. They
observed that for a single cumulus cell it takes about one hour to complete the
life cycle and that a thunderstorm consists of several cells, each at a different
stage in the life cycle. Nowadays, measurements of clouds can be made using
well-equipped aircrafts and remote sensing devices that can be operated from
aircrafts, satellites and from the surface, such as radar and microwaves. Also
lidar and in-situ measurements from rawinsondes are used.

In this section, deep, moist convection giving rise to towering cumulus and
cumulonimbus clouds will be treated. First, convection and the formation of
cumulus clouds will be addressed. Subsequently, a characterization of towe-
ring cumulus and cumulonimbus clouds is given. Finally, the occurrence of
these types of clouds and associated weather in the Netherlands is treated.

2.1.1 CONVECTION AND THE FORMATION OF CUMULUS CLOUDS

Convection in the atmosphere is the transport of heat, moisture and momen-
tum by the movement of fluid. Heat consists of sensible heat and latent heat.
Sensible heat is the heat that can be measured with a thermometer, while latent
heat is heat related to a substance changing its physical state, such as water
vapour condensating into liquid water droplets. Convection in which no vi-
sible clouds are formed is called dry convection. Convection in which phase
changes of water do play an important role is called moist convection. Both
convection types remove excess heat from the earth’s surface and transport it

5



2. BACKGROUND

into the atmosphere. When the depth of convective clouds extends to a sub-
stantial fraction of the troposphere, the convection is referred to as deep, moist
convection (Bluestein, 1993).

Clouds can form when an air parcel is lifted upwards due to mechanical forces
(low-level convergence, orography) or buoyant forces. If heat sources or sinks
are not considered and the parcel is lifted mechanically, it undergoes adiabatic
expansion and cools at the dry adiabatic lapse rate, which is about 10 K/1000
m. At a height where the parcel cools enough to become saturated, the water
vapour in the air will condense into liquid water droplets. This height level is
called the Lifting Condensation Level (LCL). Cumulus clouds 1 may arise from
surface heating of a stable boundary layer. When the surface air is heated up
to the convective temperature, a surface air parcel becomes very buoyant and
accelerates upward. Warm parcels of air that rise upward from the surface are
also referred to as thermals and have horizontal extents of 0.1 to 10 km (Houze,
1993). The buoyancy of an air parcel does not only arise from temperature
and pressure differences, but also has contributions from water vapour and
the weight of hydrometeors (precipitation particles) in the air (Houze, 1993).
The buoyancy B can be approximated by

B ≈ g
[
T ∗

T0
− p∗

p0
+ 0.61q∗0 − qH

]
(2.1)

in which T ∗ and p∗ are the temperature and pressure perturbations with res-
pect to a reference state, respectively, q∗0 is the mixing ratio of water vapour
(mass of water vapour per unit mass of air) and qH is the mixing ratio of hydro-
meteors (total mass of liquid water and ice particles per unit mass of air). The
temperature and pressure perturbations can have both a negative and positive
contribution to the buoyancy. The water vapour only has a positive contribu-
tion to the buoyancy due to the fact that water molecules are lighter than other
molecules found in the air. The hydrometeors always has a negative contribu-
tion to the buoyancy of an air parcel due to exerted drag of particles on the air,
which reduces its updraft speed. In convective clouds, generally all four terms
are of the same order of magnitude (Houze, 1993).

Once the air parcel has become saturated, the water vapour will condensate
on very small particles in the atmosphere called aerosols. They have natural
sources, such as dust and sea salt, and anthropogenic sources, such as smoke
and industrial particles. Aerosol particles that serve as a nucleus for a cloud
droplet are called Cloud Condensation Nuclei (CCN). Typically, their size is of
the order 0.1 µm, which is about 1/100 of the size of a typical cloud droplet
and 1/10000 of a typical rain drop (Pruppacher and Klett, 1997). The size dis-
tribution of the water droplets is initially controlled by the size distribution of
the CCN (Smith, 1997).

During the process of water vapour condensating into water, latent heat is re-
leased and therefore the air parcel is warmed. The amount of released heat
is equal to the amount of heat necessary to evaporate the water. This means
that once the parcel is saturated and continues to rise after passing the LCL,
the release of latent heat prevents the parcel from cooling as fast as it would
at the dry adiabatic lapse rate (Smith, 1997). The new cooling rate is called

1Cumulus is a Latin word meaning ’heap’.
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2.1 CONVECTIVE CLOUDS

the moist adiabatic lapse rate or pseudo adiabatic lapse rate and is always less
than the dry adiabatic lapse rate. It is not constant, but depends on the mois-
ture content, which, in turn, depends on the temperature, and on air pressure.
Observed values range from about 4 K/1000 m for warm humid air in the lo-
wer troposphere to about 6-7 K/1000 m in the middle part of the troposphere
(Holton, 2004). If the environmental lapse rate, which is the lapse rate of the
surrounding atmosphere, is larger than the moist adiabatic lapse rate and the
parcel is forced to continue to rise, it will reach a level where it becomes posi-
tive buoyant relative to the surrounding air. From this level on, called the Level
of Free Convection (LFC), it can freely accelerate upward (Holton, 2004). The
parcel will continue to rise until the Equilibrium Level (EL) has been reached.
At this level the temperature of the air parcel has become equal to the tempe-
rature of the surrounding air and therefore it does not experience any positive
buoyancy anymore. Generally, the parcel will overshoot the EL, sometimes
even by several kilometres, due to large updraft speeds and inertia. Then, the
parcel experiences negative buoyancy and will undergo a damped oscillation
(Doswell, 2001).

A quantitative measure of convection (or latent instability) often used is the
Convective Available Potential Energy or CAPE. It is a measure of the maxi-
mum possible kinetic energy a statically unstable parcel can acquire neglecting
the effects of water vapour and water droplets on the buoyancy, neglecting
entrainment (mixing with the surrounding air) and assuming instantaneous
adjustment to the surrounding pressure (Holton, 2004). CAPE can be written
as

CAPE =
∫ EL

LFC

Bdz (2.2)

which is equal to the amount of work done by the bouyancy force. The maxi-
mum updraft speed, wmax, an air parcel could achieve is calculated from
CAPE. Hereby all of the potential energy of the air parcel would be conver-
ted into kinetic energy (Emanuel, 1994).

wmax =
√

2CAPE (2.3)

For moderate to strong convection, typical values of CAPE range from 1000
to 3000 m2 s−2, but also values up to 7000 m2 s−2 have been observed. For a
CAPE of 2500 m2 s−2, the maximum updraft speed is about 70 ms−1 (Bluestein,
1993).

When convective clouds are very shallow, meaning their vertical extents is li-
mited, or they are short lived, the microphysical processes that can make small
droplets grow into water drops that are large enough to fall as precipitation,
are not very effective. This means that little or no precipitation will form and
all of the condensed water will re-evaporate. Examples of these kinds of non-
precipitating cumulus clouds are Cumulus humilis clouds 2, also called fair-
weather cumulus, trade-cumulus and stratocumulus 3 (Smith, 1997). Fig. 2.1
shows cumulus humilis clouds. The clouds appear dense, very white in the
sun and have fuzzy outlines. The vertical growth of small cumulus clouds is

2Humilis is a Latin word meaning ’humble’.
3Stratus is a Latin word meaning ’spread out’.
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2. BACKGROUND

Figure 2.1: Cumulus humilis clouds, also called fair-weather clouds (Young, 2007).

generally limited by a thermal inversion and their horizontal extents hardly
exceed a couple of hundred meters. Under favourable atmospheric conditions
such as extra surface heating, small cumulus clouds can develop into towering
cumulus and cumulonimbus 4 clouds (Maas, 2002). Within clouds that conti-
nue to grow vertically, the Liquid Water Content (LWC) increases and preci-
pitation will form at the onset of the mature stage (Smith, 1997). For clouds
containing mainly droplets with a radius smaller than 10 µm, condensation is
the dominant growth process of the water particles (Rogers and Yau, 1989). For
clouds containing larger droplets, growth by collision and coalescence (cap-
ture of smaller droplets by larger cloud drops) becomes increasingly impor-
tant. When large droplets gain enough weight they fall down, and collide and
stick together with smaller droplets to form new, larger droplets. For warm
clouds, whose cloud top temperatures are not colder than 0 ◦C, coalescence is
the main process for the formation of rain. The effectiveness of the coalescence
process increases with an increasing range of droplet size. Typically, a cumu-
lus cloud consisting of a cloud droplet concentration of 100 droplets per cm3

with an average radius of 10 µm grows into a cloud containing a rain drop
concentration of 1000 drops per m3 with an average radius of 1 mm in about
20 minutes. This takes in the order of 105 collisions (Rogers and Yau, 1989).

Once a cloud has extended to heights with temperatures below freezing point,
ice crystals may form. For pure water droplets homogeneous freezing does
not occur until temperatures below −40 ◦C are reached. However, with the
presence of ice nuclei, freezing can occur just below the freezing point (Rogers
and Yau, 1989). Super-cooled water drops are frequently found in clouds, espe-

4Nimbus (or nimbo) is a Latin word meaning ’cloud’ or ’rain storm’.
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2.1 CONVECTIVE CLOUDS

cially in clouds having a cloud top temperature above −10 ◦C. At a cloud top
temperature of −20 ◦C only 10 % of the clouds entirely consist of super-cooled
water drops (Pruppacher and Klett, 1997). However super-cooled water drops
have been observed at temperatures of −35 ◦C over Germany (Weickmann,
1949) and at a temperature of −40.7 ◦C in clouds over the Rocky Mountains
(Heymsfield and Miloshevich, 1993). The presence of ice crystals is more com-
mon in decaying clouds than in developing clouds (Rogers and Yau, 1989). The
part of the cloud only containing ice crystals is said to be glaciated . When ice
crystals form in the presence of super-cooled water drops, an unstable situation
exists due to the fact that the equilibrium vapour pressure over ice is less than
over water at the same temperature. This allows the ice crystals to grow by dif-
fusion of water vapour from the evaporated drops. This ice crystal mechanism
is called the Bergeron-Findeisen mechanism, which is most efficient at tempe-
ratures near −15 ◦C (Young, 1993). After gaining enough weight, an ice crystal
will fall relative to water drops and it is its fall speed that largely determines
the formation of various precipitation types. The collision and coalescence of
an ice crystal with a water drop is called accretion and leads to the formation
of graupel and hail. When two ice crystals clump together, it is called aggrega-
tion and leads to the formation of snow (Rogers and Yau, 1989). Which of the
processes (ice crystal or collision and coalescence) dominates the formation of
precipitation depends on the cloud top temperature, the liquid water content,
the updraft speed and to some extent on the droplet concentration, but they
may act concurrently within one cloud (Rogers and Yau, 1989). In cumulus
clouds that are relatively warm, the coalescence process will be the dominant
process for the formation of precipitation. Most of the world’s precipitation
(especially in the tropics) is formed under these circumstances (Young, 1993).
Outside the tropics, the ice crystal mechanism will be dominant in relatively
colder, convective clouds.

2.1.2 TOWERING CUMULUS AND CUMULONIMBUS CLOUDS

Clouds can be classified according to their shape and the height at which they
are encountered. For height classification three height classes are identified;
low heights from 0 to 2 km, middle heights from 2-7 km and upper heights
from 5 to 13 km. The towering cumulus cloud and the cumulonimbus cloud
are classified to the group of clouds encountered at low heights, although they
can extend into all three height levels (Bleeker, 1980). The base of these clouds
is relatively flat, in contrast to the rest of the cloud that has a cauliflower shape
due to bulbous towers, see Fig. 2.2. The upper part of a mature Cb cloud
is usually composed of ice crystals and spreads out in the shape of an anvil
(Houze, 1993).

Deep, moist convection is indicated by the presence of thick cumulonimbus
clouds that reach high altitudes (Hees and Lelieveld, 2000). Usually they form
from well-developed cumulus clouds (via TCu clouds) in the boundary layer.
The Cb clouds than can have a cloud base height as low as 400 m, but some-
times also up to 4 km, depending on the depth of the boundary layer. Here
surface heating does play an important role and generally one can say that the
most intense convection cases start in the boundary layer (Bluestein, 1993). Ho-

9



2. BACKGROUND

Figure 2.2: A towering cumulus cloud (left) (Lee, 2006) and a mature cumulonimbus
cloud (Young, 2007).

wever, cumulonimbus clouds can also develop from altocumulus 5 or stratocu-
mulus clouds. Altocumulus clouds are a manifestation of elevated convection,
which occurs above the boundary layer (due to incoming colder air at elevated
heights). Surface heating does not play any role of significance. Furthermore,
cumulonimbus clouds can also be embedded in altostratus or nimbostratus
clouds (Bleeker, 1980). The presence of hail, thunder or lightning classifies a
large cumulus cloud as a cumulonimbus cloud (Bleeker, 1980). Thunderstorms
always form from Cb clouds. If a Cb cloud reaches a height of 5 km it is very
likely to become a thunderstorm (Maas, 2002). The TCu cloud develops from
a well-developed cumulus cloud in which its vertical dimensions have exten-
ded more than its horizontal dimensions. It will mature into a Cb cloud under
conditions of sufficient atmospheric instability. The transition of a TCu cloud
into a Cb cloud can be seen by the presence of smooth, fibrous cloud edges at
the top, which indicates the process of glaciation in the upper part of the cloud.

The cumulonimbus clouds can occur worldwide except in the Antarctic re-
gion, but they are most commonly found in the tropics. In the tropics warm
Cb clouds are common, but most of the Cb clouds contain ice (Houze, 1993).
Mature Cb clouds typically reach heights between 8 and 12 km. However,
cumulonimbus clouds up to a height of 18 km have been observed in seve-
ral parts of the world, e.g. Central India (Krauss et al., 2007). At lower levels
these clouds are composed of liquid water droplets. At higher levels mostly
ice crystals are found due to the very cold temperatures at higher altitudes
in the atmosphere. Individual clouds start with horizontal extents of several
kilometres. Large complexes of cumulonimbus clouds, referred to as mesos-
cale convective systems (MCSs), can have horizontal extents of more than 100
km (Maas, 2002). The anvil shape of a mature Cb cloud can be explained by
considering the tropopause (’boundary’ between the troposphere and the stra-
tosphere) as a rigid lid. In contrast to the troposphere, the temperature in the
stratosphere increases with height. It is this temperature inversion at the tropo-
pause which hinders the penetration of a vertically moving air parcel into the

5Alto is a Latin word meaning ’high’.
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2.1 CONVECTIVE CLOUDS

Table 2.1: Characteristics of the mean droplet size distributions for various cloud types
(Liou, 1992).

Cloud
Type

Investigator N
(cm−3)

rm
(µm)

∆r
(µm)

LWC
(g m−3)

St Diem 260 4.5 0-20 0.44
Sc Diem 350 4.0 0-12 0.09
Cu Battan & Reitan 293 4.0 0-20 0.33
TCu Durbin 207 3.5 0-40 0.66
Cb Weickmann & Kampe 72 5.0 0-70 2.50

stratosphere. Instead, air is moved to the sides, creating the anvil shape. Ho-
wever, air parcels having enough momentum (in strong convective cases) still
might penetrate the stratosphere for several kilometres, leading to the earlier
mentioned observations of extremely high Cb clouds.

Between the 1940s and 1960s, extensive observational studies on droplet size
distribution and liquid water content in various types of clouds have been
conducted all over the world. Droplet size distributions were observed from
aircrafts using a photomicrographic technique and oil-coated slides. From ob-
tained droplet size distributions, the droplet number concentration N can be
calculated (Liou, 1992).

N =
∫

∆r

n(r)dr (2.4)

Here n(r) is the number of cloud droplets n per volume per radius r. Thus
n(r)dr is the number of cloud droplets per volume that have radii in the inter-
val (r, r + ∆r). From the droplet size distribution also the liquid water content
can be calculated (Liou, 1992).

LWC =
4
3
πρl

∫
∆r

r3n(r)dr (2.5)

Here ρl is the density of liquid water. Table 2.1 gives an overview of values of
the droplet size concentration, the mode radius rm which is the radius corres-
ponding to the peak of the droplet size distribution (n(r)dr) curve, the radius
range ∆r, and the LWC for various cloud type obtained by several investiga-
tors. The droplet size distribution varies with the position within the cloud
and with time. The presented results therefore count for averaged conditions
over a large volume of cloud. Results show that fair-weather cumulus clouds
(Cu) have a narrow droplet size distribution compared to the TCu cloud. The
Cb cloud droplet size distribution is even much broader. The droplet concen-
tration decreases and the liquid water content increases from Cu to Cb clouds.
The non-convective stratus clouds (St) and the weak convective stratocumulus
clouds (Sc) are shown for comparison. These cloud types have relatively large
droplet concentrations, but low liquid water contents and relatively narrow
droplet size distributions.
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Deep, convective clouds are associated with hazardous weather phenomena
that are generally the result of phase changes of water due to great amounts
of latent heat release. A cylindrical shaped cumulus cloud with a radius of 5
km and a height of 10 km contains about 8 x 108 kg of condensed water when
assuming an average liquid water content of about 1 g m−3. Given the fact
that it takes about 2500 J of energy to evaporate 1 gram of water, it means that
roughly 1014 J of latent heat energy is released when assuming a time scale of 25
minutes. This is comparable to a 25-kiloton bomb. Most of the energy is used
to counteract gravity, but a part may create severe weather (Doswell, 2001).
One of the most important factors for the formation of deep, moist convective
clouds is the magnitude of the wind shear and the change of direction of the
wind shear with height. To create severe storms, a minimum amount of wind
shear is needed.

Cumulonimbus clouds can form isolated, in clusters or along fronts. An isola-
ted cumulonimbus cloud, also called single-cell, has a relatively short lifetime
of about half an hour (Bennetts et al., 1986), usually develops just one main
updraft and precipitation shower and occurs in atmospheric environments of
low vertical wind shear (Houze, 1993). It is the most common type of thun-
derstorm. In the absence of significant vertical wind shear, a parcel of relati-
vely warm air rises upward to form a vertically orientated updraft. Eventually,
it will lead to the formation of precipitation particles in the form of rain, hail
and/or snow that have a sufficient large size for their terminal fall speed to ex-
ceed the speed of the updraft. As the particles fall, they exert a drag force on the
air within the updraft, thereby reducing its speed. In addition, rain drops may
evaporate when falling out of the cloud and hail may melt during the fall, both
cooling the air of the updraft and further reducing the buoyancy of the air. As
a result, a downdraft, which is a mass of cold air, will form directly beneath the
updraft. This mass of cold air will spread out horizontally when reaching the
earth’s surface, and therefore cutting of the inflow of warm (and moist) air into
the updraft. The updraft will dissipate. Heavier ice particles will fall through
the dissipating updraft, while smaller ice particles are transported upward and
then laterally outward to form the anvil of the storm, which contains the maxi-
mum concentration of ice particles. At the end of the storm life cycle, these
ice particles will slowly fall out of the anvil, aggregate and melt along the way
and ultimately fall as rain with a stratiform appearance (Houze, 1993). Fig. 2.3
presents a schematic view of the three life cycles of single-cell storm: the gro-
wing stage, mature stage and the dissipating stage. The presence of a mature
Cb cloud often is accompanied by lightning. Lightning is the manifestation
of an electrified cloud. This means that within the cloud the positive and ne-
gative charges become separated, in which lightning is the transfer of charge
between several regions within the cloud or between the cloud and the sur-
face. Most of the lightning events occur after the cloud top rises above the -15
to −20 ◦C level (about 7 km). First Cloud-to-Cloud (CC) lightning occurs and
after 5 to 10 minutes it is followed by Cloud-to-Ground (CG) lightning, which
is less frequent (Houze, 1993). However rare, single cell storms can produce
severe weather other than lightning, such as hail, downbursts (rapid, intense
downward motion producing strong wind gusts at the surface) and occasio-
nally also weak tornadoes. Usually this happens in atmospheric environments
of extreme latent instability (Groenemeijer, 2003).
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Figure 2.3: A schematic view of the three life cycles of a single-cell storm (Abbott, 1996).

When the downdraft is displaced from the updraft due to vertical wind shear,
new convective cells will form along the boundary of the cold pool of air ori-
ginating from an older dissipating cell. The boundary of the cold pool of air is
often referred to as an outflow boundary or gust front (Groenemeijer, 2003). It
typically has a depth of 500-1000 m and spreads out at a speed of about 5-10
ms−1 relative to the cloud (Bennetts et al., 1986). Along the gust front conver-
gence of air occurs and the warm, less dense environmental air is forced up-
ward over the cold, dense air, inducing ascent. The forced ascending air parcel
at the gust front will reach the LFC and turns into a new convective cell. This
process can be noticed by observing small cumulus clouds near the base of a
mature cumulonimbus cloud. If the gust front propagates slowly relative to
the mature cloud, new cumulonimbus clouds can be triggered (Bennetts et al.,
1986)). Storms consisting of a number of cells in various stages of the life cycle
are called Multi-Cell Storms or MCSs. These types of storms contain multiple
convective updrafts and downdrafts. New cells have strong updrafts in which
cloud particles rapidly grow into large precipitation particles. Mature cells
have both an updraft and downdraft accompanied with intense precipitation.
Dissipating or dying cells only consist of a downdraft and light precipitation.
As with the single-cell storms, first CC lightning occurs followed by CG light-
ning. Lightning within a multi-cell storm can occur between regions of charge
of neighbouring cells (Houze, 1993). A distinction is made between multi-cell
storms that are formed of a cluster of cells called multi-cell clusters, and multi-
cell storms that form of a line of cells, often referred to as squall-lines. The
multi-cell cluster often consists of many single-cells, each at a different stage in
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Figure 2.4: A multi-cell storm consisting of several single-cells indicated by the numbers
1 to 4, each at a different stage in the life cycle (NOAA, 2007).

the life cycle, see Fig. 2.4. The squall-lines often form along fronts or along the
merged gust front of older cells (Groenemeijer, 2003). Multi-cell storms can last
for several hours and sometimes the interaction of the gust front with the envi-
ronmental vertical wind shear may lead to a stationary system. These types of
storms than can produce extremely large amounts of localized rain over a long
period of time, leading to flood events (Thorpe and Miller, 1978).

The most severe cumulonimbus cloud structure is the super-cell thunderstorm.
A super-cell storm has a longer life time than single-cell storms and produces
severe weather such as large hail, downbursts and tornadoes. They occur in
atmospheric environments having both large CAPE and strong vertical wind
shear (Emanuel, 1994). The main differences between the single-cell and the
super-cell is the rotating updraft, referred to as mesocyclone, and very high
vertical velocities in the updrafts and downdrafts. The very intense updraft
(about 10-40 ms−1), prevents the terminal fall velocity of relatively large par-
ticles to exceed the updraft speed and therefore very large hailstones can be
produced. The super-cell storm is also electrically more active, producing ove-
rall lightning flash rates of 10-40 min−1 compared to 2-10 min−1 for ordinary
thunderstorms (Houze, 1993). In Fig. 2.5 a schematic image of the structure
of a severe super-cell is shown. The updrafts and downdrafts are indicated in
red and blue, respectively. Beneath the rotating updraft a tornado has formed,
which usually occurs at the beginning of the dissipating stage of the storm
(Houze, 1993). At the north-east side the anvil has extended far away from the
main mass of the storm due to the jet, a strong high-level wind stream in the
mid-latitudes.
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Figure 2.5: A schemtic image showing the structure of a severe super-cell storm
(Kendall/-Hunt Publishing, 2002).

2.1.3 OCCURRENCE OF CONVECTIVE CLOUDS AND ASSOCIATED WEA-
THER IN THE NETHERLANDS

In regions having a maritime climate and no orography of significance such as
in Southern England and the Netherlands, the convective instability and cap-
ping inversions are usually weak during convective events. High CAPE values
are rare, still relatively large amounts of CAPE can be found in the lower part
(1-3 km) of the troposphere (Browning et al., 2007). High vertical wind shears
occur on a frequent base in the Netherlands (Groenemeijer, 2003). However,
most convective events in these regions originate from convective initiation in
the boundary layer (Browning et al., 2007). A characteristic outbreak of deep,
moist convection occuring in the summer and leading to an isolated Cb cloud,
can be described by a small layer of relatively warm and dry air beneath col-
der air in the middle and upper troposphere, trapping warm and moist air
in the boundary layer. A parcel rising from the surface and encountering the
small layer will become negative buoyant. To be able to penetrate the layer of
Convective INhibition (CIN) a surface air parcel has to become warmer and/or
more moist, for instance due to a diurnal trend in temperature. During the
day, the surface continues to be heated by the sun and there will be a built-up
of warm, moist air beneath the CIN, therefore also increasing CAPE. At some
point in time the air warms and moistens so much that it becomes buoyant en-
ough to penetrate the CIN and reach the LFC, which is usually located between
1 and 2 km. Fair-weather cumulus clouds will form. These clouds can grow
into TCu clouds, which eventually can grow into Cb clouds that might become
severe thunderstorms. Mesoscale forcing such as low-level convergence can
lift the LCL, which makes the CIN thinner and weaker, therefore enhancing
convective initiation (Browning et al., 2007). Cb clouds can also form along
cold fronts due to forced lifting of air along the front line (Maas, 2002). This
usually leads to a lined formation of Cb clouds that travels with the speed of
the overpassing front, which can be up to 70 km/h (VWKwww). They can
also develop in the cold air behind a cold front due to cold air moving over a
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Figure 2.6: NOAA satellite visible (left) and an inverted infrared image (right) of a Cb
cloud near Roermond on September 13 1999 at 14:06 UTC (Maas, 2002).

relatively warm surface. Also, occlusion fronts may trigger the formation of
Cb clouds due to forced lifting of air (Maas, 2002). Although Cb clouds occur
during the entire year, especially in the summer the isolated Cb clouds are res-
ponsible for most of the precipitation. During a summer day Cb clouds can
produce intense showers with a rain rate of 2 mm per minute (Maas, 2002).
Their horizontal size may vary between a diameter of about 5 km to diameters
of 100 km, if they develop into multi-cell clusters (VWKwww). In the Nether-
lands they usually have a LWC of more than 0.5 gm−3 compared to the LWC
of stratus clouds of about 0.1-0.5 gm−3 (Buishand and Velds, 1980).

Fig. 2.6 presents an example of a thunderstorm observed in the Netherlands.
Shown are a visible and an infrared images taken on September 13 1999 14:06
UTC by the AVHRR (Advanced Very High Resolution Radiometer) instrument
onboard of the American NOAA (National Oceanic and Atmospheric Admi-
nistration) polar satellite having a horizontal resolution of about 1 km. Near
the city of Roermond, which is in the Southeast part of the Netherlands, a cu-
mulonimbus cloud with a diameter of about 30 km has formed. From the vi-
sible image it can be seen that the eastern part of the Netherlands is very sunny
while the Western part is relatively cloudy (white colors) due to an incoming
cold front from the northwest. In the East, temperatures of 31 ◦C were rea-
ched during the day, giving rise to atmospheric instability. In the vicinity of
the Cb cloud also many smaller cumulus clouds formed. From the length of
the shadows in the visible image it can be clearly seen that the Cb cloud has
a much larger vertical extent than the surrounding cumulus clouds. From the
brightness in the (inverted) infrared image, it can be seen that the cloud top
temperature of the Cb cloud is much lower (appears whiter) than the surroun-
ding clouds, also indicating greater vertical growth.

Associated (severe) weather of Cb clouds in the Netherlands are intense sho-
wers of rain and/or hail, lightning, strong wind gusts, occasionally whirl-
winds, water spouts, and even tornadoes. Thunderstorms that produce intense
showers and strong wind gusts occur on a regular basis. However, severe thun-
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derstorms, such as super-cell storms, which produce most of the severe torna-
does in the world, are rare. The Dutch criterion for a severe thunderstorm is a
maximum total lightning intensity of at least 500 discharges per 5 minutes in
an area of 50x50 km. On average, this criterion is met twice a year in the Ne-
therlands (Schmeits et al., 2006). Most lightning and large hail stones in the Ne-
therlands, especially further inland, are observed in the summer (VWKwww).

2.2 OBSERVING CLOUDS FROM SATELLITE AND RADAR

Clouds can be observed from space using visible and infrared satellite data.
From the visible and infrared satellite data, cloud physical properties can be
derived and these can be used to characterize different cloud types. Especially
nowcasting, detection and monitoring of (severe) convective clouds using vi-
sible and infrared satellite data has been given great attention since the use of
meteorological satellites. Satellite data can be used to improve weather radar
observations of precipitation or by using it as independent information out-
side the radar network. Furthermore, a weather radar dataset is often used as
validation.

Basic physics of radiative transfer in a cloudy atmosphere will be treated in
subsection 2.2.1. Subsequently, MSG and the onboard radiometer SEVIRI will
be addressed in subsection 2.2.2. The process of converting satellite radiance
measurements into cloud physcial properties, using the CPP algorithm and a
radiative transfer model, will be explained in subsection 2.2.3. In subsection
2.2.4, radar principles will be treated.

2.2.1 RADIATIVE TRANSFER IN A CLOUDY ATMOSPHERE

The basic global energy balance of the earth is between energy that comes from
the sun and energy from radiative emission from the earth and its atmosphere
that is returned to space. Most absorption of solar radiation takes place at
the earth’s surface. However, most radiative emission takes place in the at-
mosphere. 99 Percent of the solar radiation consists of radiation having wa-
velengths in the visible (0.4-0.75 µm) and near-infrared (0.75-5 µm) part of the
electromagnetic spectrum (Hartmann, 1994). Radiation at these wavelengths
is also called shortwave radiation. The radiation emitted by the earth and at-
mosphere mainly comes from the infrared (5-200 µm) part of the spectrum and
is called longwave radiation. The solar and infrared radiation at various wa-
velengths are shown in Fig. 2.7.

In the earth-atmosphere energy balance, clouds play a significant role by in-
teracting with both solar and infrared radiation. The effects of clouds on solar
and infrared radiation are determined by the cloud optical properties, such as
cloud optical thickness and emissivity. In turn, these cloud optical properties
depend on micro-physical properties, such as particle size, liquid water path
and droplet concentration and on macro-physical properties, such as cloud thi-
ckness, cloud base height, cloud top height and cloud cover. The photons in a
beam of solar radiation may interact with cloud particles by absorption or scat-
tering. Absorption is the process in which the energy of the photon is taken up
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Figure 2.7: The solar and terrestrial sprectrum (McKnight, 1990).

by the cloud particle and scattering is the process in which the original direc-
tion of the photon and its energy changed into a new direction. Both processes
move energy from a beam of solar radiation traversing a cloud. The inten-
sity of the scattering process depends on the particle size. Particles with a size
relatively small compared to the wavelength of the incident radiation (e.g. mo-
lecules) scatter according to the process called Rayleigh scattering (Rayleigh,
1871). For this type of scattering the scattering intensity is proportional to the
inverse fourth power of the wavelength. Particles that have a comparable or re-
latively large size compared to the wavelength of the incident radiation, scatter
according to the process called Mie-theory (Mie, 1908). It is applicable to cloud
particles assuming that a cloud particle can be described as a single homoge-
neous sphere (of water). Because the distances between cloud particles in a
cloud are much greater than the wavelength of the incident radiation, scatte-
ring of radiation from a beam by one particle may be treated independent of
scattering of the same beam by other particles (Liou, 1992). The spectral de-
pendence of the scattering intensity is much smaller, and forward scattering
(in the propagation direction of the beam) is more pronounced. In the visible
wavelength absorption is generally low. Therefore, photons may be scattered
over 100 times before they are scattered out of the cloud. This multi-scattering
process is influenced by micro and macro-physical properties of the cloud.

The energy of a beam of solar radiation is measured by its intensity or radiance
(Wm−2sr−1µm−1). This holds for monochromatic light and taking into ac-
count the size area and direction of the beam. When traversing a medium
like the atmosphere the intensity of the beam can be changed by scattering,
absorption and emission. Scattering light out of the beam and absorption wi-
thin the beam contribute to the reduction of the beams intensity. This is cal-
led extinction. Extinction can be quantified using the extinction cross-section
Cext,λ (in µm2), which is the sum of the scattering cross-section Csca,λ, and the
absorption cross-section Cabs,λ, at wavelength λ. Table 2.2 shows extinction
cross-sections for various cloud types at 0.5 µm. At this wavelength absorp-
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Table 2.2: Extinction cross sections for several cloud types at a wavelength of 0.5 µm
(Liou, 1992).

Cloud type Cu (fair-weather) TCu Cb Sc St
Cext,λ (in µm2) 165.9 468.3 481.6 120.4 473.1

tion may be neglected, so the extinction cross-section is nearly equal to the
scattering cross-section. The extinction cross-section depends strongly on the
droplet size distribution (compare Table 2.2 to Table 2.1). The relative impor-
tance of the extinction by scattering and by absorption is characterized by the
single scattering albedo:

ω =
Csca
Cext

(2.6)

When only extinction processes in the beam are considered and interaction of
cloud particles with monochromatic light is assumed, the reduction of intensity
of a beam traversing the homogeneous atmosphere can be described by the
Beer-Bouguer-Lambert law (Hartmann, 1994)

Iλ = Iλ(0)e−τλ/ cos θ0 (2.7)

in which Iλ is the intensity of the beam after traversing the atmosphere, I0,λ
is the incoming solar radiation at the top of the atmosphere, τλ is the cloud
optical thickness for wavelength λ and cos θ0 is the cosine of the solar zenith
angle. This reduced version of the general radiative transfer equation does
not include a source function. From Eq. (2.7) it can be seen that the intensity
of a beam traversing a homogeneous extinction medium decays exponentially,
characterized by the cloud optical thickness. In a plane-parallel atmosphere,
where the atmosphere is represented by infinite and horizontally uniform thin
layers on top of each other, and along the vertical z-axis, this cloud optical
thickness in turn is defined by

τλ =
∫ ztop

0

kext,λ(z)dz (2.8)

in which kext,λ(z) (in m−1) is the volume extinction coefficient. It is defined as

kext,λ(z) = Cext,λn(z) (2.9)

where n(z) (in m−3) is the density of the scatterers (cloud droplets). The vo-
lume extinction coefficient is a measure of the optical density of the medium,
and can be written as the sum of a scattering coefficient and an absorption co-
efficient.

To describe the scattering of photons by particles into various directions, so
called phase functions are used. They describe the relationship between the
amount of energy that is scattered at an angle Θ to the direction of the pro-
pagation of the incident radiation. A frequently used phase function for at-
mospheric radiative transfer applications is the analytical phase function P (Θ)
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written in terms of an asymmetry factor g and the scattering angle Θ (Henyey
and Greenstein, 1941).

P (Θ) =
1

4π
(1− g2)

(1 + g2 − 2g cos Θ)
2
3

(2.10)

An asymmetry factor of 1 indicates only forward scattering. Cloud droplets
and ice crystals usually have values of about 0.85 and 0.7, respectively. In the
shortwave range (0.3-4 µm) this phase function does not work properly due
to sharply peaked phase functions of realistic water droplets and ice crystals.
Using Mie-theory, the phase function of spherical water droplets can be com-
puted exactly. For scattering by ice crystals, which are non-spherical particles,
the laws of geometric optics are often used to describe the angular distribution
of the scattered light (Liou, 2002).

The reflectance of a cloud measured from a satellite shows spectral variation.
This is due to spectral properties of clouds, Rayleigh scattering of molecules
and absorption by gases in the atmosphere. Eq. (2.11) is used to calculate cloud
spectral reflectances Rλ at the top of the atmosphere from measured reflected
spectral radiance Lλ (in W m−2sr−1µm−1) and spectral solar irradiance F0,λ

(in W m−2 µm−1) (Liou, 2002).

Rλ =
πLλ

F0,λcosθ0
(2.11)

The factor π arises from integrating the solid angle over a hemisphere. The
amount of reflected spectral radiance Lλ depends on the sun-satellite geome-
try, which is shown in Fig. 2.8. Here, θ0 is the solar zenith angle, φ0 is the solar
azimuth angle, θ is the satellite viewing zenith angle and φ is the satellite azi-
muth angle. Knowing these angles, the scattering angle Θ can be computed,
which is the angle between the direction of the incoming solar radiation and
the direction of the reflected solar radiation.

At thermal infrared wavelengths scattering by cloud particles is negligible,
while absorption and emission dominate. Within a few scatter events most
of the radiation is absorbed due to a low ω, while the remaining radiation is
scattered forward due to large g. Optically thick clouds can be considered to
radiate as a blackbody, which means they emit radiance Bλ near the cloud top
according to the Planck function

Bλ(T ) =
2hc2

λ5(ehc/KλT − 1)
(2.12)

where Bλ(T ) is the upwelling radiance at wavelength λ (µm) at a cloud top
temperature T (K), h is the Planck’s constant, K is the Boltzmann’s constant
and c is the speed of light. An object is called a blackbody if it absorbs all
radiation incident on it (Hartmann, 1994). It is the upper limit to the amount
of radiation an object can emit at a given temperature.

At most infrared wavelengths, optically thin clouds can generally not be consi-
dered blackbodies. The upwelling radiance at the cloud top, Iλ, for optically
thin clouds, can be described by (Roebeling et al., 2008)

Iλ = ελBλ(Tcloud) + (1− ελ)Bλ(Tsurface) (2.13)
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Figure 2.8: A schematic representation of the sun-satellite geometry (Roebeling et al.,
2008)

in which ελ is the emissivity of the cloud, Bλ(Tcloud) is the Planck radiance of
the cloud and Bλ(Tsurface) is the Planck radiance of the surface below, all at
wavelength λ. The emissivity of an object is defined by the ratio of the amount
of radiance emitted by the object to the amount of radiance the object would
emit if it were a blackbody at a given wavelength. Tcloud and Tsurface are the
brightness temperatures of the cloud and the surface, respectively. The bright-
ness temperature is the observed temperature when assuming a surface emis-
sivity of 1. A blackbody has emissivity values of 1 at all wavelengths. For
all other objects, emissivity values range between 0 and 1. By not considering
(multiple) scattering the emissivity can be approximated using the absorbing
cloud optical thickness τλ at wavelength λ in the following equation (Minnis
et al., 1993)

ελ = 1− e−τλ/ cos θ (2.14)

This equation approaches 1 for clouds having a large absorption optical thick-
ness. However, neglecting multiple-scattering may lead to an underestimation
of cloud emissivity (Minnis et al., 1993).

It is the analysis of the spectral differences in cloud reflectances (solar ra-
diation) and brightness temperatures or emissivities (infrared radiation) that
leads to the principle of cloud physical property retrievals for different types
of clouds from satellite observations. The retrievel of cloud physical properties
from SEVIRI observations will be explained in subsection 2.2.3.
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2.2.2 THE MSG SATELLITE AND ONBOARD SEVIRI

Since the 1960s meteorological satellites are used in weather and climate stu-
dies. In the United States the National Aeronautics and Space Administration
(NASA) and NOAA have been involved in developing and operating meteo-
rological satellites, while in Europe the European Space Agency (ESA) and EU-
METSAT operate the meteorological satellites. The first meteorological satel-
lite (TIROS-1: Television InfraRed Observation Satellite) launched into space
by NASA was a polar orbiting satellite. Polar satellites orbit at an altitude
of about 800 km and pass each latitude at the same local solar time twice a
day. With polar orbiting satellite data, long-term comparison and collections
at consistent times are enabled. In 1974, the first geostationary meteorologi-
cal satellite (GOES-1; Geostationary Operational Environmental Satellite) was
launched, also by NASA. A geostationary satellite is always at the same posi-
tion with respect to the rotating earth and orbits at an altitude of about 36,000
km. Geostationary satellites provide a continuous monitoring of large parts of
the earth. Nowadays, tens of meteorological geostationary satellites are opera-
ted by the USA, Europe and countries such as China, India, Japan and Russia
(Schmetz et al., 2002). Together, the satellites form a global observation system
for tropical storms, mid-latitude systems and a warning system for rapidly de-
veloping weather.

The European geostationary meteorological Meteosat satellites are a joint pro-
ject between ESA and EUMETSAT. The first Meteosat satellite was launched
in 1977. Since then, six other Meteosat satellites have been launched, all num-
bered from Meteosat-1 to Meteosat-7. In August 2002, the first satellite of the
Meteosat Second generation (MSG), also called Meteosat-8, has been launched
and became operational on 29 January 2004 (EUMETSAT, 2009). In Decem-
ber 2005, the second MSG satellite has been launched and a third and fourth
satellite are expected to be launched in the years 2011 and 2013, respectively
(EUMETSAT, 2009). With the new generation of Meteosat satellites, the infor-
mation and observation service of the first generation has been greatly enhan-
ced. The MSG satellites have an image-repeat cycle of 15 minutes compared to
30 minutes for Meteosat, 12 spectral channels compared to 3 for Meteosat and
a sampling distance of 3 km at nadir for all channels except the high resolution
channel (1km) compared to 5 km (and 2,5 km) for Meteosat. Expected opera-
ting life times of each satellite are about 7 years and together they are expected
to provide service through around 2020 (EUMETSAT, 2009). Like Meteosat,
MSG is a two-satellite operational service which means that two satellites will
be in orbit at the same time, but one being available as a spare (Schmetz et al.,
2002). Furthermore they are spin-stabilized satellites, which means that they
spin counter-clockwise at 100 revolutions per minute around their longitudinal
axis, which is aligned with the earth’s rotational axis (EUMETSAT, 2009). Both
MSG satellites are located closely to where the equator meets the Greenwich
meridian (0 ◦ longitude), but can be moved up to 50 ◦ east and west (EUMET-
SAT, 2009).

The main instrument and payload on board of the MSG satellites is the Spin-
ning Enhanced Visible and Infrared Imager, which is an optical imager radio-
meter observing the earth and atmosphere in 12 spectral bands. Eleven chan-
nels observe the full disk of the earth at a repeat-cycle of 15 minutes whereby
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Figure 2.9: The scanning mechanism of the SEVIRI instrument (Aminou, 2002).

12.5 minutes include image acquisition and 2.5 minutes include retrace and sta-
bilization (EUMETSAT, 2009). One channel, the High Resolution Visible chan-
nel (HRV), observes half of the full earth disk in the east-west direction and the
full disk in the north-south direction. This is done in order to reduce data size.
The earth disk is scanned from south to north and from east to west. The north
to south scan is achieved by a scan mirror covering the earth disk with about
1250 scan lines. This means that for the eleven channels at lower resolution, an
image consists of about 3750 scan lines since three detectors for each channel
(nine for the HRV channel) are used together. The east to west scan is achieved
by the rotational spin of the satellite mentioned before (Schmetz et al., 2002).
All images of SEVIRI are rectified to the 0 ◦ longitude (EUMETSAT, 2009). At
nadir view the sampling distance for eleven channels is 3 km and for the HRV
channel 1 km. Since the aperture angle for each Instantaneous Field Of View
(IFOV) is constant, the viewing area at the surface (and therefore the sampling
size) varies with the satellite viewing angle. In other words, the spatial resolu-
tion of a pixel decreases with increasing off-nadir viewing angle (Schmetz et al.,
2002). A complete image of the earth disk consists of 3712 x 3712 pixels for the
eleven channels and 11136 x 11136 for HRV (Schmetz et al., 2002). The number
of scan lines can be reduced, which makes rapid scans possible. Fig. 2.9 shows
the scanning mechanism of SEVIRI.

The spectral channels of the onboard SEVIRI have been selected in such a way
that good information is provided on clouds, the earth’s surface, water vapor,
carbon dioxide and ozone. Most of these channels already have been operated
before in radiance observation instruments on board of other satellites such as
the AVHRR onboard NOAA and instruments on previous Meteosat satellites.
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Table 2.3: SEVIRI channel characteristics; minimum, center and maximum wavelengths
as well as main observational applications (Schmetz et al., 2002).

No. Channel Spectral band Characte-
ristics (min-cen-max λ in µm)

Main observational appli-
cations

1 VIS 0.6 0.56 - 0.635 - 0.71 Surface, clouds, wind fields
2 VIS 0.8 0.74 - 0.81 - 0.88 Surface, clouds, wind fields
3 NIR 1.6 1.50 - 1.64 - 1.78 Surface, cloud phase
4 IR 3.9 3.48 - 3.90- 4.36 Surface, clouds, wind fields
5 WV 6.2 5.35 -6.25 - 7.15 Water vapor, high level clouds,

atmospheric instability
6 WV 7.3 6.85 - 7.35 - 7.85 Water vapor, atmospheric in-

stability
7 IR 8.7 8.30 - 8.70 - 9.1 Surface, clouds, atmospheric

instability
8 IR 9.7 9.38 - 9.66 - 9.94 Ozone
9 IR 10.8 9.80 - 10.80 - 11.80 Surface, clouds, wind fields,

atmospheric instability
10 IR 12.0 11.00 - 12.00 - 13.00 Surface, clouds, atmospheric

instability
11 IR 13.4 12.40 - 13.40 - 14.40 Cirrus cloud height, atmos-

pheric instability
12 HRV Broadband (0.4 - 1.1) Surface, clouds

Table 2.3 shows all 12 channels of SEVIRI, 4 channels in the VISible (VIS) and
Near-InfraRed (NIR), 8 in the InfraRed (IR) and Water Vapor (WV) and the
HRV channel, with their spectral band characteristics and their main observa-
tional application.

The absorbing channels enable scientists to investigate the composition of at-
mospheric air masses. In the thermal channels, the contribution of an atmos-
pheric layer to the measured radiance by the satellite is described using weigh-
ting functions. These weighting functions peak at different heights for each
channel. The form of a weighting function depends on the actual atmospheric
state and the satellite viewing angle (Schmetz et al., 2002). Channels 1 and 2
are the two channels in the visible part of the solar spectrum. They can be used
for daytime cloud, snow and ice detection due to reflected sun radiation, for
land surface monitoring and for aerosol detection. Clouds can be discrimina-
ted into water and ice clouds. The visible 0.8 µm channel is more suitable for
land surface and vegetation monitoring due to higher reflectances of soil and
leafs, while in the 0.6 µm channel transparent clouds are better visible due to
less reflectivity of the surface. In the visible channels, the cloud particle absorp-
tion is negligible and can therefore also be used to estimate cloud optical depth.
In these channels there are an ozone absorption band around 0.6 µm and weak
water vapor absorption lines. Channel 3 is in the near-infrared and can be used
to discriminate between water and ice clouds due to stronger absorption in the
ice phase at this wavelength. Also, water clouds above snow and ice can be
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discriminated. Cloud particle absorption is moderate. There is a small amount
of carbon dioxied absorption. The infrared channel 4 is used as a solar reflec-
tion channel as well as a thermal emission channel. It is primarily used for low
cloud and fog detection (Lee et al., 1997), but also to derive low level wind fields
from cloud tracking (Velden et al., 2000). Cloud particle absorption is strong.
At night this channel in combination with channel 9 can be used to estimate
cloud particle size and optical depth. There is some absorption of water vapor.
The water vapor channels 5 and 6 are two channels that have water vapor as
the principle absorper, but their weighting functions peak at different levels in
the troposphere. They are used for water vapor and wind observations. Water
vapor channels have also been used for the height location of semitransparent
clouds (Nieman et al., 1993). Channel 7 is an infrared channel which can be
used to discriminate between water and ice clouds and to support thin cirrus
cloud detection. Again water vapor is the principle absorber. Also Channel 8
is an infrared channel and an absorbing channel for ozone. It can be used to in-
vestigate ozone patterns in the atmosphere. The two infrared channels 9 and 10
are well-known split-window channels and are principally used for sea surface
temperature estimations due to differential water vapor absorption at the two
wavelengths. Differences in cloud emissivity are small, but might lead to diffe-
rential brightness temperatures (cloud top temperature measurements) which
can be used to detect thin cirrus clouds (Inoue, 1987). Furthermore, they can
be used for volcanic ash clouds detection (Prata, 1989). The infrared channel
11 is an absorbing channel for carbon dioxide and can contribute to tempera-
ture information in the lower troposphere and height locating of cirrus clouds
(Menzel et al., 1983). The HRV channel 12 is, among others, used for improving
spatial classification of clouds (Amato et al., 2008). In Fig. 2.10 an example is
given of four SEVIRI images of the earth in the 0.6 µm, 1.6 µm, HRV and 10.8
µm channels.

2.2.3 MSG-SEVIRI DERIVED CLOUD PHYSICAL PROPERTIES

Over the last couple of decades, a number of methods have been developed
to derive cloud physical properties from satellite measurements. The common
principle of these methods is that the cloud reflectances in the visible wave-
length (0.6 or 0.8 µm) are primarily a function of Cloud Optical Thickness
(COT)and that the cloud reflectances in the near-infrared wavelength (1.6 or
3.9 µm) are primarily a function of particle size (Nakajima and King, 1990).
The differences in the methods mainly lie in the choice of satellite they were
designed for, the visible and near-infrared wavelengths and the iteration and
interpolation schemes used. Radiative transfer model simulations are used to
relate observed radiances to cloud physical properties. Several models, based
on different methods such as the Monte Carlo RTM (Macke et al., 1999), Dis-
crete Ordinates RTM (Stamnes et al., 1988) and the Doubling-Adding KNMI
—(DAK) RTM (De Haan et al., 1987; Stammes, 2001) have been developed to
approximate or solve the radiative transfer equation in a plane-parallel atmos-
phere. The RTM cloud reflectance simulations made with predefined cloud
physical properties and viewing geometry are used to generate Look Up Tables
(LUTs). Once generated, these LUTs can be used to compare the simulated re-
flectances to the satellite observed reflectances and to translate them into cloud
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Figure 2.10: SEVIRI scan images of the earth in the 0.6 µm, 1.6 µm, HRV and 10.8 µm
channels (EUMETSAT, 2009).

physical properties. In this study the cloud optical thickness, effective radius
(REFF) and liquid water path (LWP) are retrieved from MSG-SEVIRI measure-
ments using the DAK radiative transfer model and the CPP algorithm (Roebe-
ling et al., 2006).

The CPP algorithm is a two-step approach to retrieve cloud physical properties
from visible and near-infrared satellite reflectances. The first step is to separate
cloudy pixels from non-cloudy pixels in satellite images. Cloudy pixels are
pixels that are (partly) filled with clouds. The algorithm used to separate these
pixels is based on the MODIS (MODerate-Resolution Imaging Spectroradiome-
ter, onboard of the Terra and Aqua satellites) cloud detection algorithm (Plat-
nick et al., 2003), but some modifications have been made for the SEVIRI cloud
detection algorithm. The cloud detection algorithm does not depend on ancil-
lary information, such as atmospheric profiles and surface temperature. After
cloud pixel testing, a cloud mask is generated having four confidence levels:
clear certain, clear uncertain, cloud uncertain, cloudy certain (Roebeling et al.,
2006). The second step is to relate the reflectances of cloudy pixels (cloudy cer-
tain and cloudy uncertain) to cloud physical properties by utilizing DAK. The
CPP algorithm uses visible (0.6 µm) and near-infrared (1.6 µm) wavelengths to
retrieve cloud optical thickness and particle size, respectively. Particle size will
be measured in terms of the effective radius, which will be explained later on
in this subsection. The retrieval of particle size from the 1.6 µm wavelength is
weighted towards the upper part of the cloud (Platnick, 2001). This is due to
the fact that the degree of penetration of photons into the cloud depends on
wavelength, particle type and particle size. For optically thick clouds (COT >
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8), the reflectance at 1.6 µm is mainly a function of particle size. For optically
thin clouds (COT< 2) the 3.9 µm wavelength would be more appropriate to re-
trieve particle size. However, this wavelength has several disadvantages: at 3.9
µm the radiance consists both of reflected solar radiation and emitted thermal
radiation, a low signal to noise ratio that increases the retrieval uncertainties
and a less representative value for optically thick clouds, because the retrieval
represents the particle size of the upper part of the cloud. Therefore, for opti-
cally thin clouds a climatologically averaged effective radius of 8 µm for water
clouds and 26 µm for ice clouds is used (close to values used by Rossow and
Schiffer (1999)). A weighting function is used to smooth the transition between
the assumed effective radius and the observed effective radius.

The retrieval of COT and particle size is done in an iterative manner, which
means that satellite observed reflectances at the two wavelengths are repea-
tedly compared to LUTs of the DAK simulated reflectances for predefined COT
and particle size (Jovilet and Feijt, 2003). During this process, the retrieved
COT at the 0.6 µm channel is used to update the retrieval of the particle size at
the 1.6 µm channel and the iteration continues until both cloud physical pro-
perties converge to stable values. In the LUTs, values for COT are interpolated
using polynomial interpolation and values for particle size are interpolated
using linear interpolation.

Another cloud physical property which can be retrieved from satellite data
is the Cloud Top Temperature (CTT). In the CPP algorithm the CTT is deri-
ved from the 10.8 µm Brightness Temperature (BT) and the emissivity of the
cloud ελ. The brightness temperature is the apparent observed temperature
assuming a surface emissivity of 1 (Roebeling et al., 2006). For optically thick
clouds, the brightness temperature can be regarded as the thermodynamic tem-
perature of the upper part of the cloud in which the emissivity approaches a
value of 1. For optically thin clouds having lower emissivity values, the obser-
ved brightness temperature also has a contribution from upwelling radiation
from the surface below, see Eq. (2.13). The 10.8 µm brightness temprature is
corrected for using the cloud (absorbing) optical thickness, τ10.8. It is related
to the cloud (scattering) optical thickness that is obtained directly from visible
reflectance measurements. The cloud (absorbing) optical thickness is derived
as follows (Minnis et al., 1998)

τ10.8 = τ0.6
Q10.8

Q0.6
(2.15)

in which Q10.8 and Q0.6 are the extinction efficiency factors at 10.8 and 0.6 µm,
respectively. The extinction efficiency factors are normalized extinction cross-
sections, which means that the extinction cross-section is divided by the area
of a particle having radius r, πr2.

To discriminate between water and ice clouds (thermodynamic phase), a
consistency test of observed differences in cloud reflection at 0.6 and 1.6 µm
is used, as well as a threshold test of the 10.8 µm brightness temperature. The
consistency test compares observed and simulated differences in cloud reflec-
tance at the two wavelengths. These differences arise from stronger absorption
by ice particles than water particles at the 1.6 µm wavelength (Jolivet and Feijt,
2003). Cloudy pixels are labeled as ice clouds when they are identified as ice
clouds by the consistency test and have a cloud top temperature below 265 K.
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Figure 2.11: Flowchart of the CPP algorithm (Roebeling et al., 2006).

All other cloudy pixels are labeled water clouds.

From the COT at 0.6 µm (τvis) and the effective radius, the liquid water path
(LWP) can be calculated using the following equation (Stephens et al., 1978),
assuming a fixed vertical profile of the liquid water content.

LWP =
2
3
τvisreρl (2.16)

Here, ρl is the density of liquid water. The (scattering) cloud optical thickness
in the visible τvis is related to the (absorbing) cloud optical thickness in the
infrared τir and depends on particle size and thermodynamic phase. For large
water and ice particles τir ∼ 0.5 τvis (Roebeling et al., 2006).

Fig. 2.11 presents the flowchart of the CPP algorithm, which starts at the top
with satellite measured radiances combined with a cloud detection scheme to
create a cloud mask. For cloudy pixels, the 0.6 and 1.6 µm reflectances and
the 10.8 µm brightness temperature are calculated. Using LUTs for both water
and ice clouds, the measured reflectances are compared to retrieve COT and
re. During an iteration process (indicated by the arrows in the center circle of
the figure) the retrieved COT is used to update the re and to calculate the CTT
until the cloud physical properties converge to a stable value. Finally, using
the retrieved COT and re, the LWP can be calculated.

The DAK radiative transfer model is developed for narrowband multiple scat-
tering calculations at the visible and near infrared wavelengths in a plane-
parallel and multi-layer Rayleigh scattering atmosphere, containing plane-
parallel and horizontally homogeneous clouds over a Lambertian surface. It
solves the radiative transfer equation for solar radiation in the atmosphere mo-
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nochromatically and takes polarization into account. Thermal emission, 3D
cloud effects, multi-layer cloud effects and aerosols in the atmosphere are not
taken into account. DAK starts with the calculations for reflection and trans-
mission of an optically thin layer in which no more than two scattering events
are allowed to occur. With this restriction, the radiative transfer equation can
be solved analytically. Next, another identical layer is placed on top of the
previous layer and the reflection and transmission of the combined layers are
calculated by computing successive reflections back and forth between the two
layers. This is called the doubling procedure and is continued until the actual
optical thickness of the cloud is reached.

To describe the size distribution of the water particles in the clouds a modified
gamma distribution is used, which is defined by the effective radius re and the
mean effective variance νe. They are shown in Eq. (2.17) and Eq. (2.18) (Hansen
and Hovenier, 1974). The particles in water clouds are assumed to be spherical
droplets.

re =

∫∞
0
r3n(r)dr∫∞

0
r2n(r)dr

(2.17)

νe =

∫∞
0

(r − re)2r2n(r)dr
r2
e

∫∞
0
r2n(r)dr

(2.18)

Here n(r) is the size distribution of the particles and r is the radius of a particle.
The effective radius is the parameter that represents the radiative properties of
a size distribution of cloud droplets. The effective variance is a measure of the
width of the distribution. In the generated LUTs the water particles in clouds
are assumed to have effective radii between 1 and 24 µm and an effective va-
riance of 0.15. For ice clouds a homogeneous distribution of imperfect hexago-
nal ice crystals type Cb, C1, C2 and C3, which are characterized by their Length
(L), diameter (D) and volume equivalent effective radius re, is assumed (Hess
et al., 1998). They have volume equivalent effective radii between 6 and 51 µm.

The DAK simulations are first done for a black surface. The measured reflec-
tances R(αs) at 0.6 and 1.6 µm also have a contribution from the surface αs,
which is computed using the following equation (Chandrasekhar, 1960)

R(αs) = R0 +
αst(θ0)t(θ)
1− αsαA

(2.19)

in which R0 is the atmospheric reflectance above a black surface, t(θ0) and
t(θ) are the atmospheric transmission at the solar and viewing zenith angle,
respectively, and αA is the hemispherical sky albedo for upwelling isotropic
radiation. Over land, a surface albedo map generated from MODIS white-sky
albedo (bi-hemispherical reflectance in the absence of a direct component) data
over one year is used, which is a good approximation of the surface albedo be-
low optically thick clouds (Moody et al., 2005). Over ocean, a surface albedo
of 0.05 in both wavelengths is assumed (Roebeling et al., 2006). Table 2.4 de-
monstrates the settings used in the DAK simulations to create the LUTs. The
model for the mid-latitude summer was taken from Anderson et al. (1986) and
the imperfect hexagonal ice crystals are taken from Hess et al. (1998).
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Table 2.4: Characteristics of the atmosphere and surface as well as sun-satellite geome-
try and cloud physical property intervals used to generate LUT’s with DAK (Roebeling
et al., 2005).

Fig. 2.12 shows DAK simulations of 0.6 and 1.6 µm reflectances for water
clouds and ice clouds. The slanted lines of COT values of 2, 4, 8 and 16 in
the figure show that for optically thin clouds both the 0.6 µm and 1.6 µm de-
pend on the COT. For optically thick clouds, the lines of COT values are almost
vertically orientated and nearly perpendicular to the lines of effective radius
values, showing little dependence on 1.6 µm reflectances and therefore reliable
retrievals of particle size.

Roebeling et al. (2005) studied the sensitivity in radiative transfer calculations
on cloud physical property retrievals. Differences arise due to different me-
thods used to solve the radiative transfer equation and different iteration and
interpolation schemes. Due to a nonlinear relationship between cloud proper-
ties and observed reflectances and the retrieval of cloud properties, small errors
in simulated reflectances can result into larger errors in retrieved cloud physi-
cal properties. Four well-known RTMs were compared including DAK and
the Monte Carlo method and relative mean differences of less then 3 % were
found. From the simulation including the 3% error, the cloud optical thickness
and droplet effective radius sensitivity were analyzed channel-wise. It showed
that especially for thick clouds (COT > 60) errors in the retrieved cloud optical
thickness can increase up to 30% using a 3% error in 0.6 µm reflectances. The
errors in the retrieved droplet effective radius were relatively small. However,
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Figure 2.12: DAK simulations of 0.6 µm reflectances versus 1.6 µm reflectances for ice
(left) and water clouds (right) (Roebeling et al., 2005).

the accuracy of the retrieved cloud physical properties is also determined by
other sources of error such as instrument calibration and cloud top elevations
that strongly affect the observed visible and infrared signal (Hees and Lelie-
veld, 2000).

2.2.4 RADAR PRINCIPLES

A Radar (RAdio Detection And Ranging) is a type of radiometer instrument
that uses electromagnetic waves to identify the range, altitude, direction and
speed of objects. Since the end of World War II, radars have become available
for meteorological research. From early on, successive radar images have been
used to determine the motion of precipitating systems and to extrapolate their
path into the future (Ligda, 1953). Radars can detect the most active convec-
tive cores within thunderstorms by looking at the intensities of the reflectivity
factor in precipitation echoes. Also the shape of the area of the echo and its
horizontal and vertical extents are used for convective storm identification and
monitoring. Furthermore, Doppler radars can be used to monitor storm dy-
namics, such as mesocyclones. In contrast to satellites, developing convective
activity can not be detected by radar until the precipitation stage has been rea-
ched. Also, radar networks that provide more than a local coverage are still
limited to Western-Europe and North-America and even there the spatial co-
verage is limited due to ground shielding. However, radars do provide infor-
mation about vertical profiles within clouds, while satellite data mostly contain
information about the upper part of the cloud.

Weather radars transmit short pulses of electromagnetic energy from an an-
tenna into the atmosphere. The signal travels at the speed of light until it hits
a target and returns back to the antenna. Modern radars usally use one an-
tenna to transmit and receive the signal. Most radar antennas rotate about a
vertical axis aiming at the horizontal, but meteorological radars can also aim

31



2. BACKGROUND

Table 2.5: Radar bands, their associated frequencies and detectable hydrometeors (Wal-
ther, 2008).

Radar Band
Designation

Nominal
Frequency

Appropriate meteorological scatterers
(hydrometeors)

L 1-2 GHz
S 2-4 GHz large precipitation droplets
C 4-8 GHz precipitation
X 8-12 GHz precipitation and cloud droplets
Ku 12-18 GHz small precipitation and cloud droplets
K 18-27 GHz cloud droplets
Ka 27-40 GHz cloud droplets
V 0-75 GHz cloud droplets
W 75-110 GHz small cloud droplets

their antenna into the vertical. Weather radars have horizontal ranges of se-
veral hundreds of kilometers and a vertical range of several kilometers. They
transmit their signal pulses at a rate varying from several hundreds of Herz to
several thousends of Herz and can transmit signals of more than 1MW of po-
wer and receive powers as small as 10−14 W. The frequency of the electroma-
gnetic signal varies from about 100 MHz to 100 GHz (Rinehart, 2006). Radars
operating at lower frequencies do not experience a lot of signal attenuation,
which is the reduction of power that any electromagnetic radiation experiences
traversing a medium. The radiation beam can be attenuated by molecules in
the atmosphere (relatively small), clouds and precipitation particles (Rinehart,
2006). However, to be able to operate at low frequencies, radars need quite big
antenna dishes and large amounts of power. At higher frequencies attenuation
effects increase, but radars require less power. Most weather radars work in
so called X-band, S-band or C-band, which are shown in table Table 2.5. In
North-America the standard is S-band, while for Europa mostly C-band wea-
ther radars are used (Walther, 2008).

At the physical basis of weather radars lies the radar equation. It can be ap-
plied to any radar, provided the spherical targets meet the Rayleigh scattering
assumption. The amount of power that returns to the antenna, Pr, is given by

Pr =
π3PtG

2θφh|K|2l
1024 ln (2)λ2

z

r2
(2.20)

in which Pt is the transmitted peak power, G is the gain of the antenna, θ and
φ are the horizontal and vertical beamwidth, λ is the wavelength of the trans-
mitted energy, h is the pulse length, l is the loss factor due to attenuation, |K|2
depends on the dielectric constant of water or ice and r is the target range of
the precipitate. All these variables are either known or can be measured di-
rectly. Events such as multiple scattering, mixed water phase of the targets and
a partially or inhomogeneous filled radar beam are not accounted for in the
equation (Walther, 2008). The primary interest of radar meteorologists is the
radar reflectivity factor z and it is solved mathematically by the radar. In radar
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Table 2.6: Derived empirical constants A and b using the typical Z = ARb relation, for
several precipitation types (Walther, 2008).

Source Precipitation type a b
Joss and Waldvogel (1990) Stratiform 300 1.6
Rosenfeld et al. (1993) Tropical Rain 250 1.2
Marshall and Palmer (1948) Stratiform 200 1.6
Fujiwara (1969) Thunderstorm 486 1.37

meteorology the radar reflectivity factor z (in mm6m−3 ) is used to describe
the intensity of the measured signal that returns to the antenna. It is determi-
ned by the number and size of the particles and therefore is independent of
the radar. Due to the wide range of values it can obtain, a logarithmic radar
reflectivity factor Z (in dBZ) is used for convenience. For fog this reflectivity
factor can become as small as -30 dBZ, while for large hail stones it can become
as large as 75 dBZ (Rinehart, 2006). A radar image displaying the measured
radar reflectivities within an area is called an echo. Non-precipitating clouds
may be hard to detect due to the fact that the cloud droplets are too small to
give rise to measurable reflectivity values. Rain, however is easy to detect. It
should be noted that small droplets, even if they outnumber the larger drops
by several magnitudes, contribute almost nothing to the reflectivity compared
to the larger dropws. This is caused by the to-the-sixth-power dependence on
the diameter of spherical targets in the calculation of the reflectivity.

There is a relation between the reflectivity and the rain rate and since seve-
ral decades various Z-R relationships have been developed. Most of the Z-R
relationships are of the mathematical form

z = ARb (2.21)

in which R is the rainfall rate (usually in mm/h), z is the radar reflectivity fac-
tor (in mm6m−3) and A and b are empirical constants. The empirical constants
can be derived from calculating both radar reflectivity and rainrates from mea-
sured drop-size distributions.

Table 2.6 shows Z-R relationships for various precipitation types. The most
commonly used drop-size distributions and Z-R relationship are the ones de-
veloped by Marshall and Palmer (1948).

z = 200R1.6 (2.22)

Rain reflectivity factors vary from 20 dBZ to about 50 dBZ. Reflectivity factors
higher than 55 dBZ are usually associated with hail (Rinehart, 2006).

Most weather radars also provide direct measurements of the speed of the tar-
gets moving away or towards the radar using the Doppler effect. Just as with
a frequency shift of sound due to relative motion of the source and the listener,
electromagnetic radiation will show a frequency shift for a relative motion of
the radar and the targets. For a given radar, the amount of the frequency shift
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only depends on the radial component of the velocity of the target. The dis-
tance a signal has to travel towards the target and back to the radar (2r) can be
measured in wavelengths or radians. A phase shift in a given interval of time
is a frequency shift. Within the radar, the phase of the received signal is com-
pared to the phase of the transmitted signal to determine the amount of phase
shift. This phase shift is translated into a radial velocity of the echo. The maxi-
mum phase shift is ± π radians and leads to a maximum velocity a Doppler
radar can detect unambiguously, also called Nyquist velocity, and a maximum
radar range.
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3rd Chapter
SATELLITE CONVECTIVE

CLOUD STUDIES

After the launch of the first geostationary meteorological satellite (GOES-1) in
1974, American scientists used the 30 minutes sequences of visible and infrared
images to study convective initiation and the various convective systems such
as thunderstorms and large mesoscale convective systems that may arise from
it. However in 1969, Fujita already used the ATS (Application Technology Sa-
tellite), launched by NASA primarily to test out new technology in space com-
munication, to derive cloud motion. Purdom (1976) concluded after a study
of convective activity using GOES-1, that the high-resolution imagery (8 km
for infrared and 1 km for visible) from the satellite could be used subjectively
to detect the initiation and maintenance of convective systems by monitoring
convergence lines, revealed by a thin line of cumulus clouds. From early on,
attention has been given on combining satellite data and other sources of me-
teorological information, especially radar, for monitoring convective activity
and forecasting severe weather.

3.1 IR AND VIS THRESHOLDS

In the 1970s and 1980s, much of the focus was on convective rainfall estima-
tions on larger scales, especially convective precipitation in the tropics. IR and
VIS data were used to define cloud types causing rain. Mainly IR-based me-
thods were developed to make a distinction between convective and stratiform
cloud areas in satellite imagery. The cloud areas then give information about
the convective activity of the precipitation systems and help to identify regions
that might be affected by hazardous weather. Principally, a relationship bet-
ween cloud top temperature and cloud top height is assumed, as well as a re-
lationship between cloud top height and the amount of precipitation. The sim-
plest method is using fixed IR thresholds which yield the best relationship bet-
ween cloud top brightness temperatures (BTs) in satellite imagery and ground-
based rainfall observations (Arkin, 1979; Negri et al., 1984; Adler and Negri,
1988). The Convective-Stratiform Technique (CST) of Adler and Negri (1988)
first identifies local brightness temperature minima (very cold pixels) in the IR
image. Then the slopes from the local brightness temperature minima are cal-
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culated. Large slopes are associated with convective cores, while small slopes
are associated with cirrus clouds. Using an empirical function (derived from
a 1-dimensional cloud model), rain rate and convective rain area are calcula-
ted from the local brightness temperature minima. The results were compared
to radar echoes. Convective rain fields from the CST technique were most si-
milar to radar echoes for young, isolated storms. King et al. (1995) compared
an IR-based technique, the GOES precipitation index GPI (Arkin and Meisner,
1987), to a technique that also includes VIS data, the supervised classification
procedure RAINSAT (Lovejoy and Austin, 1979; Hogg, 1990; King et al., 1989).
The estimated rainfalls from these techniques were validated against radar and
surface gauge data in Japan. The GPI technique assumes that all pixels colder
than a Brightness Temperature (BT) of 235 K precipitate at a constant rate of 3
mmh−1 and was developed for rainfall estimations in the tropics. The RAIN-
SAT technique was calibrated using radar data from southern Ontario. It does
not show any significant rainfall for cloud albedos less then 0.5. It shows ra-
pidly increasing rain rates above cloud albedos of 0.7 when only the VIS rain
rate relationship is considered. The IR-only relationship shows a rapid increase
in rain rates for temperatures colder than 220 K. Considerable improvement,
especially a decrease in false alarm rate, can be achieved when VIS data is in-
cluded. The VIS data is especially helpful in filtering out cirrus clouds. These
clouds have cold cloud top temperatures, but appear transparent in the VIS
images. However, during the night this VIS data is not available.

3.2 MULTI-SPECTRAL IR AND WV THRESHOLDS

Cirrus clouds can also be identified using the brightness temperature diffe-
rence (BTD) between the 11 µm and 12 µm channel. These clouds show large
values of BTD due to different emissivities in the wavelengths. Inoue (1985)
identified cirrus clouds using a BTD11−12 of more than 2.5 K. Kurino (1997)
found that a BTD11−12 of more than or equal to 3 K corresponds to cirrus with
no rain. These multi-spectral techniques, also called split channel/window
techniques, were first used on polar data (AVHRR), since the old geostationary
satellites only had one VIS, IR and WV channel. Fig. 3.1 shows a cloud classifi-
cation scheme based on two thresholds (Inoue, 1987). The height classification
of the clouds is based on a BT threshold and on a BTD threshold. Clouds below
a BT of−20 ◦C are high level clouds. The BDT of optically thick clouds, such as
cumulonimbus clouds features 0 ◦C. Also the BTD of an IR and a WV channel
are used in convective cloud studies. The BT in the water vapour over deep
convective clouds is often higher than the BT in the infrared (Schmetz et al.,
1997; Tjemkes et al., 1997). It is related to the presence and amount of stratos-
pheric water vapor. The water vapour absorbs radiation emitted from the cold
cloud top and emits it at a stratospheric temperature, which is usually higher
than those at the top of the troposphere. Kurino (1997) documented that areas
with BT11−6.7 less than or equal to 0 K correspond to deep convective clouds
with heavy rain. Amorati et al. (2000) have related positive BDT values to the
rainfall amount for deep convective storms in Northern Italy.

Fixed thresholds for VIS reflectances and NIR, IR or WV BTs or BTDs are
usually designed in a specific context (synoptic/seasonal situation). There-
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Figure 3.1: A cloud classification scheme using a brightness temperature threshold and
a brightness temperature difference threshold (Inoue, 1987)

fore, the methods that use fixed thresholds may not be reliable for cloud/-
precipitation classification and rainfall estimates outside this context. A cou-
pling to ancillary data makes thresholds dynamical. Zinner et al. (2008) use the
temperature of the tropopause determined by ECMWF model analysis for an
adaptive threshold, Ttrop-1.5 K for the WV channel, to find cloud tops near-
tropopause heights. Clouds with near-tropopause heights are considered to be
mature convective clouds. In the Enhanced Convective-Stratiform Technique
(ECST), Reudenbach et al. (2001) use numerical model data, such as vertical
profiles of temperature and humidity, for a better adjustment to the actual at-
mospheric situation.

3.3 SATELLITE DERIVED CLOUD PHYSICAL PROPERTIES

Multi-spectral techniques can also be used to derive optical and micro-physical
cloud properties for upper cloud parts. In turn, these cloud physical properties
can be related to cloud types and can therefore be used to improve cloud/pre-
cipitation classification and rainfall retrievals. Rosenfeld and Gutman (1994)
used AVHRR channels 0.65 µm, 3.7 µm, 10.8 µm and 12.0 µm to derive cloud
top properties and to relate them to the precipitation potential of clouds. The
general idea is that tops of raining clouds reflect little solar radiation in the
NIR 3.7 µm due to larger water droplets and ice particles in the upper part of
the cloud. It was shown that optical thick clouds with an effective radius lar-
ger than 14 µm can be related to radar reflectivities that indicate precipitation.
Rosenfeld and Lensky (1998) investigated the evolution of the effective radius
with cloud top temperature (or cloud top height) to gain more insight on preci-
pitation forming processes in convective clouds using AVHRR imagery. They
developed a technique (RLT) based on two assumptions. The first states that
the evolution of cloud top effective radius re with temperature T, observed by a
satellite at a given time (snapshot) for a cloud ensemble, is similar to the re−T
time evolution of one specific cloud. This exchangeability between time and
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space domains is called the ergodicity assumption. The second assumption
states that the re in the upper part of the cloud is similar to the re well within
a cloud at the same height, as long as no precipitation falls through that cloud
volume. The second assumption is verified using in situ aircraft measurements
(Rosenfeld and Lensky, 1998), while the first assumption is verified using rapid
scan SEVIRI imagery of convective clouds over Africa (Lensky and Rosenfeld,
2006). The re − T relations of a convective cloud field is stable over time and
depends mainly on the thermodynamic state of the air mass and the present
type and amount of aerosols. Thies et al. (2008) use the cloud top height, cloud
water path and cloud phase in upper cloud parts to separate rainfall areas into
sub areas of different precipitation processes and rainfall intensities. The rain
area is separated into sub areas of convective and advective-stratiform precipi-
tation using a pixel-based confidence function. The confidence function is de-
termined by comparing the values of VIS, NIR and IR channels and IR and WV
channel differences to ground-based radar observations. Subsequently, these
sub areas are divided into sub areas of differing rainfall intensities. Classifi-
cation of convective precipitation sub areas is based on the conceptual model
that convective rain clouds with high rainfall intensities are characterized by a
larger vertical extension and a cloud top reaching higher into the atmosphere.
This is used to establish a relationship between cloud top temperature and
rainfall probability and intensity. Classification of advective-stratiform preci-
pitation sub areas is based on the conceptual model that advective-stratiform
rain clouds with higher amounts of cloud water path and higher amounts of
ice particles in the upper part of the cloud have higher rain intensities.

3.4 CONVECTIVE CLOUD FEATURES AND PATTERN RE-
COGNITION TECHNIQUES

Deep convective clouds show (above) cloud top features and patterns, such
as cold-U/V shaped features (McCann, 1983) and plumes (Setvák and Dos-
well III, 1991), that can be recognized in VIS, NIR, IR and WV channels. Fujita
(1981) was the first to describe significant cloud top structures, usually related
to super-cell storms, using IR imagery. The plume-like shapes that are typically
located downwind from the coldest cloud top and from that point expand (Le-
vizzani and Setvák, 1996), show increased cloud top reflectivities in the 3.7 or
3.9 µm channels. This enhanced reflectivity may arise from very small ice crys-
tals that are lifted up above the cloud top anvil, which has larger and therefore
heavier ice crystals (Melani et al., 2003). The BTD between WV and IR show
positive values which might be caused by pumping of water vapour above
cloud top heights. The BTD field is very closely related in a spatial sense to
the 10.7 µm BT field. Highest BTD values were found above the coldest BT
areas. Setvák et al. (2003) suggest a link between the observed plumes and
warm wakes in the cold U/V signatures. Both features can be considered to be
possible indicators for long-lasting storms such as super-cells. Fig. 3.2 shows
satellite images of a severe storm with a plume originating from the warm area.

Pattern recognition can be done in an advanced manner using statistical clas-
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Figure 3.2: Images of a severe storm on 30 July 1994 over the English channel. The
upper two images show AVHRR satellite images in the 0.725-1.1 µm channel (left) and
10.3-11.3 µm channel (right). The lower image presents a diagram of cloud top structure
(Levizzani and Setvák, 1996).

sifiers whereby cloud pixels with similar spectral and textural properties are
clustered. Methods such as neural networks and k-nearest neighbour can be
used to compare pixel properties to a database selected by human experts (Tag
et al., 2000; Pankiewicz et al., 2001). For supervised classification techniques,
large amounts of training samples are selected from satellite imagery and la-
beled by experts to create a large database. One of the main limitations is
that the method is trained for specific environments. Unsupervised classifi-
cation techniques group statistically similar pixels. The obtained clusters are
then labelled by experts. Berendes et al. (2008) use an unsupervised cluste-
ring algorithm, Standard Deviation Limited Adaptive Clustering (SDLAC), for
convective cloud identification and classification in daytime satellite imagery.
The focus is on classifying cumulus clouds in different stages of the life cycle.
Spectral channels in the VIS, IR, NIR and WV from GOES 12, MODIS and SE-
VIRI were used as well as an 11 x 11 pixel neighborhood Grey Level Difference
Vector (GLDV) derived from the HRV channel for each pixel. The GLDVs are
used to measure the ’contrast’ and is useful for identifying cumulus and stra-
tocumulus clouds (Welch et al., 1988). Statistically similar clusters are grouped
into logical classes and therefore the cumulus cloud class may consist of seve-
ral clusters. Each cluster consists of a mean and standard deviation for each
spectral channel and features such as channel difference and texture. This in-
formation is not interpreted physically, but used to find the best fit for each
cluster. The SDLAC algorithm has already been used as a detection algorithm
for overshooting convective cloud tops.
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3.5 TEMPORAL CLOUD INFORMATION

By tracking clouds and monitoring trends in spectral channels, convective
cloud development can be observed for individual cloud systems. Roberts
and Rutledge (2003) relate IR (10.8 µm) cloud top brightness temperature
trends with radar reflectivity for quasi-stationary convection in eastern Colo-
rado using GOES-8 and the Weather Surveillance Radar-1988 Doppler (WSR-
88D). The Rate Of Change (ROC) of the BT is used to find active (large negative
rates) and suppressed (positive or low negative rates) cumulus cloud growth
over boundary layer convergence features. Results show that monitoring both
the cloud growth and the occurrence of subfreezing cloud-top temperatures,
which indicates the initiation of the ice nucleation process, via satellite, can lead
to up to 30 minutes advanced notice of convective storm initiation over radar
use only. Convective storm initation is defined as the initiation of storms that
will eventually show radar reflectivities of> 35 dBZ. Also the false alarm rate is
reduced when monitoring the ROC. For the separation between convective and
stratiform cloud areas on the Southern side of the Alps, Bolliger et al. (2003) use
spatial and temporal pixel (count: 0-255) information from Meteosat-6 data.
Their method is based on the assumptions that convective cloud areas exhibit
strong textural pixel variability in terms of count values and that they show
a distinct temporal evolution due to strong up- and downdrafts within. The
spatial variation is determined by calculating the variance of a 3 x 3 pixel ar-
ray. A high variance indicates a strong textured cloud top associated possibly
with convective activity. The temporal variation is calculated by determining
the rate of change of individual pixel count values over a 10-minute period.
Pixels showing strong cooling may indicate convective updrafts. The convec-
tive precipitation areas found by satellite are compared to radar results. Radar
volumes containing convective precipitation are defined if the 90% quantile of
the maximum reflectivity at a height interval 1.5 km above the 0 ◦C reference
height, i.e. 4.5-5.5 km, exceeds 30 dBZ. Fig. 3.3 shows a satellite and radar
image of a deep convective cloud. The satellite image shows areas of cooling
and warming, while the radar image shows areas of convective and stratiform
precipitation. The localization of convection in the satellite image is only pos-
sible during the growing phase of the deep convection system, before the area
is shielded by an anvil. Embedded convection is too weak to produce distinct
signals. Data from the visible channel did not seem to improve the identifica-
tion of convective areas.

Zinner et al. (2008) track and monitor severe convection from its initiation to
the mature stage using Meteosat-8 SEVIRI channels IR 10.7 µm, WV 6.2 µm
and VIS. Their method is called the Cumulonimbus Tracking And Monitoring
(Cb-TRAM) algorithm. Before cell patterns are being detected and tracked, a
motion field is extracted from two consecutive images using a so called pyrami-
dal scheme. A disparity vector field is generated to interpolate images at time
steps between two satellite images and to extrapolate images into the short-
range future. An overlapping technique is used to track clouds. Detection of
convective clouds is done in 3 stages. Stage 1 is the convective initiation and
is detected by looking at rapid development of cloud areas in the HRV chan-
nel. Furthermore only HRV developments that are accompanied with cooling
in the IR and HRV reflectivities of more than 0.5 are taken into account. From
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Figure 3.3: Satellite image (left) and radar image (right) of a deep convective cloud
occuring on 4 October 1999 at 21:45 UTC in Switzerland (the thick white and black line
in the images represent the country boarder). The coloured pixels in the satellite image
indicate the intensity of the cooling (positive values) or warming (negative values). The
blue colours in the radar image represent stratiform precipitation, while the red colours
represent convective precipitation (Bolliger et al., 2003).

the HRV t-1 image a first guess cloud structure without any additional cloud
area development is made using the disparity vector field at t-1 for the current
time step t HRV image. This first guess image is substracted from the current
image. Positive areas represent gains in cloud area. The motion field, without
changes in cloud amount, is approximated by using smoothed IR images of the
previous two time steps. The same is done for the IR using the previous two
WV images. A product field of the normalized ∆HRV and ∆IR is made and
areas with values above a threshold are stored in the cloud mask and assigned
development stage 1. Stage 2 is detected by looking at rapid cooling. The WV
channel is used to detect rapid vertical development, due to growth of convec-
tive cells, by looking at the cooling of cloud tops in the upper troposphere. As
in stage 1, ∆WV is obtained by subtracting the extrapolated image from time
step t-1 to time step t from the current WV image whereby the disparity field
is extracted from time steps t-1 and t-2. Again a threshold is used, but now to
find areas of intense developments which are already likely to have hazardous
intensities. Stage 3 represents mature thunderstorm cells. They are detected
by looking at areas that exhibit WV temperatures close to the current tempera-
ture of the tropopause, obtained from the ECMWF model analyses, and large
local gradients in reflectivities in the HRV channel. Marked are mature convec-
tive cells possible with cirrus anvil. For the measure of variability (regions of
strongest updrafts generally exhibit strong cloud top height variability) a two
dimensional gradient value from the surroundings of each pixel in the HRV
channel is used. As in stage 1 the two thresholds are multiplied. The three
development stages are combined into one mask showing all detected cell pat-
terns and their stages. During night the marking of stage 1 cumulus clouds is
de-actived and the marking of stage 3 cumulus clouds only uses the WV thre-
shold. Thresholds where obtained from fuzzy logic using a data set containing
convective events in Europe. Fig. 3.4 presents satellites images in the HRV, WV
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Figure 3.4: Satellite images from 24 June 2005 at 14 UTC over Central Europe in the
HRV channel (upper left), WV channel (upper right) and in the IR channl (lower left).
From these channels a combined mask of all three development stages (lower right) is
created (Zinner et al., 2008).

and IR channel and the mask that combines all three development stages. To
validate the Cb-TRAM algorithm, German weather radar and lightning data
are used. Radar reflectivities and the occurrence of lightning can be used to
distinguish between smaller convective cells and large thunderstorms. The
overall conclusion is that the algorithm is not only capable of correctly iden-
tifying thunderstorms and the cloud stages, but can also detect cell patterns
which evolve into thunderstorms at a time when radar and lightning signals
are not yet visible.

3.6 CONVECTIVE CLOUD MASKING

Next to Zinner et al. (2008) also Mecikalski and Bedka (2006) use cloud mas-
king to define areas of (potential) convective clouds. They use near-real time
geostationary satellite VIS and IR imagery to develop a nowcasting (0-1 h)
Convective Initiation (CI) algorithm. GOES VIS (1 km resolution) and IR (4-
8 km resolution) is used to identify cumulus clouds in the satellite imagery for
which CI is likely to occur in the near future. Training data is used to evaluate
satellite images prior to the occurrence of CI and to identify predictors of CI.
Before IR-based ’interest fields’ are developed a convective cloud mask is used
to identify convective cloud pixels. The convective cloud mask includes a ho-
rizontal brightness gradient threshold in the VIS imagery to locate cumulus
cloud edges and a dynamic (time-of-day, time-of-year) brightness threshold in
the VIS imagery. The −20 ◦C 10.7 µm BT threshold is used to separate imma-
ture from mature cumulus clouds and cirrus. Above −20 ◦C it is assumed that
the clouds are still immature and did not start to precipitate yet. Furthermore,
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Table 3.1: The per-pixel interest fields and critical (threshold) values used in the CI-
algorithm (Mecikalski and Bedka, 2006).

CI interest field Critical value
10.7 µm Tb (1 score) < 0 ◦C
10.7 µm Tb time trend (2 scores) < −4 ◦C/15min ∆TB/30

min<∆TB/15 min
Timing of 10.7 µm Tb drop below < 0 ◦C
(1 score)

Within prior 30 min

6.5 - 10.7 µm difference (1 score) −35 ◦C to −10 ◦C
13.3 - 10.7 µm difference (1 score) −25 ◦C to −5 ◦C
6.5 - 10.7 µm Time Trend (1 score) > −3 ◦C/15 min
13.3 - 10.7 µm Time Trend (1 score) > −3 ◦C/15 min

the standard deviation in the VIS imagery over a 5x5 pixel box is calculated
and a threshold is set to assure enough spatial variation in the image. Only
pixels identified as immature cumulus clouds are retained in the mask. Thick
cirrus clouds(cold, little texture), mature cumulus clouds (cold, high texture)
and stratus/thin cirrus clouds (warm, little texture) are removed. In total eight
interest fields are chosen (see Table 3.1) and each pixel from the convective
cloud mask is assigned one score if it satisfies the interest field. A pixel with at
least a score of seven represents a cumulus cloud in a pre-CI state. To be able to
use time trends, cloud motion has to be taken into account. From atmospheric
motion vectors (AMVs) (identification algorithm of Velden et al. (1997)) Satel-
lite derived Offset Vectors (SOVs) are formed. A SOV is defined as the num-
ber of pixels in the latitudinal and longitudinal direction that a given cumulus
cloud pixel has moved in between two satellite images. The SOVs are calcu-
lated by decomposing the speed and direction of the velocity using the AMV
algorithm, then multiplying the velocity components by the time interval (5-15
min) and divide the result by the pixel resolution. The results of CI cases are
compared to the WSR-88D Doppler radar data for several cases (comprising of
3 different types of convective events) in the USA. Accuracies of 60/70% are
obtained when comparing the CI nowcast pixels to radar reflectivities of > 35
dBZ. False alarms occurred due to small errors in the SOVs. Results show that
moving convective storms can be predicted to 30/45 min in advance. The algo-
rithm is designed to isolate larger cumulus clouds and will behave differently
in different kind of environments. Ongoing work suggests that the trend in the
10.7 µm BT, the 10.7 µm BT itself and the trend in BTD for 13.3-10.7 µm are the
most important interest fields. The CI nowcast algorithm can be improved by
improving the cloud tracking algorithm, defining the correct interest fields and
thresholds and their relative importance and better collocation of satellite and
radar images. The CI algorithm could also be coupled to information about
the lower tropospheric motion and atmospheric instability. For nighttime, a
different algorithm has to be developed since VIS data is not available.
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4th Chapter

DATA AND METHOD

This chapter describes the MSG-SEVIRI dataset, which includes cloud physi-
cal properties and HRV reflectances, and the METAR dataset which includes
Cb/TCu reports. Both datasets are split into a training and validation data-
set. Two steps in the Cb/TCu cloud detection method are presented. First, a
convective cloud mask is used to construct a hazard map, which includes po-
tential convective cloud pixels. Second, a logistic regression model is used to
determine the risk, in terms of probability, that hazardous cloud areas consist
of Cb/TCu clouds.

4.1 DATA

4.1.1 MSG-SEVIRI

From a number of studies presented in the previous Chapter, it has become
clear that satellite data can be used to detect the presence of clouds as well as
to distinguish between different types of clouds and precipitation. Most stu-
dies focus on the use of (multi-spectral) IR and WV thresholds. A few studies
use satellite derived cloud physical properties to investigate precipitation pro-
cesses within convective clouds and to estimate convective rainfalls. Howe-
ver, little effort has been done to directly relate satellite derived cloud physical
properties to the presence of convective clouds, whether precipitating or not,
within satellite images.

This research is focused on using MSG-SEVIRI derived cloud physical proper-
ties to detect convective clouds (Cb/TCu) within a defined area. The avai-
lable satellite derived cloud physical properties are the cloud top temperature,
the cloud optical thickness, the effective radius, the liquid water path and the
Cloud thermodynamic PHase (CPH). They are derived using the DAK radia-
tive transfer model and CPP algorithm as described in subsection 2.2.3. Fur-
thermore, the reflectances in the visible wavelengths are used (HRV). Combi-
ned, they present a relevant set of cloud physical properties that can be used
to distinguish between different types of clouds. Table 4.1 shows an (approxi-
mate) range of values of each cloud physical property. As mentioned in sub-
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Table 4.1: MSG derived cloud physical properties and HRV reflectance: minimum and
maximum values.

Minimum Maximum
CTT 200 K 300 K
COT 0 256
REFF water 1 µm 24 µm
REFF ice 6 µm 51 µm
LWP 0 g/m2 8700 g/m2

HRV 0 1

section 2.2.3, the effective radius depends on the thermodynamic phase of the
cloud particles.

The MSG data are available for a box area of about 60 x 100 km centered around
Schiphol, the main airport of the Netherlands. At the low spatial resolution, the
MSG box area consists of 15 by 15 pixels. For the high resolution it is 45 by 45
pixels. Schiphol is located near the coast in the western part of the Nether-
lands at a latitude of 52.3 ◦ and a longitude of 4.7 ◦. The satellite viewing angle
of MSG over the Netherlands is about 60 ◦. The MSG box area is shown in
Fig. 4.1. A large part of the MSG box area shows mainland. In this part of the
country mainly cities and grass-lands are found and a neglegible orography
(most part lies beneath the sea level). The north-west corner of the MSG box
area shows a section of the North Sea. All MSG data are available at a time reso-
lution of 15 minutes. The available data covers a period from the years 2004 to
2007 for the summer months May to September. Due to the preferred use of the
HRV channel next to the derived cloud physical properties, only day-time data
is considered. During the night no data from visible wavelength channels is
available. In the CPP algorithm, retrievals are only made at solar zenith angles
below 72 ◦. Therefore, the length of the day-time period changes slightly from
day to day through the year, but will be approximately between 6 a.m. and 6
p.m. This means that within this research the development of a Cb/TCu cloud
detection method is focused on day-time summer period cases in the coastal
area of the Netherlands. The cloud physical properties data are interpolated to
the high resolution of the HRV data. By doing so, the cloud physical properties
can be combined with the high detail of the visible channel. The HRV data is
especially important for describing the textural characteristics (or spatial varia-
bility) within the MSG box area.

A few considerations should be made when using the MSG data. When obser-
ving high clouds at higher latitudes from a geo-stationary satellite, the parallax
effect plays a role Due to the viewing condition (large angle between the satel-
lite located above the equator and objects located at higher latitudes) there is a
shift between the position of objects, such as clouds in the satellite image, and
their real position. The maximum parallax for the highest clouds (>10 km) seen
on a MSG satellite image, will be about 17 km to the north. This parallax effect
will not be corrected for as explained in the next section. Furthermore, there
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Figure 4.1: The MSG box area (red lines) with Schiphol Airport as the center pixel (red
dot). The image has been taken from the Aqua satellite on 31 March 2003 (NASA/GSFC
MODIS Land Rapid Response Team).

exists a shift between the HRV image and the images at other wavelengths due
to the scanning mechanims of SEVIRI. The shift in the HRV image is corrected
for using the 0.6 µm channel, which lies within the spectral broadband HRV
channel. The HRV image is downscaled to the low resolution of the 0.6 µm
channel by taking the average reflectance of a 3x3 pixel box. Next, the HRV
image is shifted into all directions and compared to the 0.6 µm channel. The
shift that results into the largest correlation between the two images is used.
Almost all cases show the same shift and no more than one pixel to the west
and two pixels to the north. This is consistent with the findings of Duerr et al.
(2009) and Deneke and Roebeling (2009).

4.1.2 HRV-COT, RADAR AND LIGHTNING DATA

Next to the MSG-SEVIRI derived cloud optical thickness at low resolution, a
high resolution cloud optical thickness (HRV-COT) has been derived, using
observations from the high resolution visible channel. The CPP algorithm re-
trieves COT from the 0.6 µm channel, which observes radiances in a narrow
band around 0.6 µm, see Table 2.3. The HRV channel observes radiances over
a wider range around 0.6 µm, between 0.3 and 0.8 µm, but can be used to ap-
proximate COT at a higher spatial resolution. In this research, a simple proce-
dure is adopted to estimate the COT of HRV pixels in three steps. First, a simple
parameterization is defined to relate LUTs of 0.6 µm radiances to COT. Second,
the radiances of nine HRV pixels are re-calibrated to radiances of the low reso-
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lution 0.6 µm channel, using the ratio between HRV and 0.6 µm radiances as
a correction factor. Third, HRV-COT is retrieved from the re-calibrated HRV
radiances, using the simple parameterization defined at step one. The parame-
terization is constructed in such a way that the problem of the fast saturation
of the HRV (reaching maximum reflectance values) with respect to the COT is
minimized, see Fig. 2.12. Similar to the 0.6 µm low resolution COT values, the
HRV-COT values range from 0 to 256. Note that the construction of the HRV-
COT is a rough approximation and should be refined in future research, but
suffice for the purpose of investigating usefulness of cloud physical properties
on high resolution.

To investigate the combined performace of MSG satellite data and radar and
lightning data, radar reflectivities from the KNMI weather radar have been
used to calculate the mean, minimum and maximum dBZ values within the
MSG box area. Also the number of pixels with values above 30 dBZ, which is
similar to the 29 dBZ threshold value used in the present KNMI radar-based
Cb/TCu detection method (Wauben et al., 2006), and above 40 dBZ are com-
bined with MSG satellite data. From the lightning detection network (SAFIR:
Surveillance et Alerte Foudre par Interférométric Radioélectrique), the number
of detected flashes, with a minimum of two, over the past ten minutes within
the MSG box area is used.

4.1.3 METAR

METAR is a format of a weather report about the current state of the wea-
ther at and in the vicinity of an airport and is released on a routine bases. It
is intended for external use and is predominantly used by pilots as part of the
pre-flight preparations at other national and international airports. At Schiphol
most meteorological information, such as wind speed and direction, has been
automated. This means that meteorological quantities are measured by instru-
ments located at the airport. However, at all times a human observer is present
to monitor the current state of the weather and to report subjective information
based on visual inspection. The METAR reports are generated twice an hour,
namely at 25 and 55 minutes past the hour. The reports include information
about the weather over the last 10 minutes.

A maximum of five cloud layers can be reported, whereby cloud cover and
cloud base height are reported for each cloud layer. The degree of cloud cover
increases with increasing cloud base height when several cloud layers are being
reported. Cloud type is not reported. Exceptions are made for well-developed
cumulus clouds, which are the cumulonimbus and towering cumulus clouds,
because these clouds may pose a threat to flight safety. One layer consisting
of both cumulonimbus and Towering cumulus cloud is reported as Cumulo-
nimbus cloud. The METAR reports do not include information on the exact
location of the reported Cb/TCu clouds.

Well developed cumulus clouds with greater vertical extents than horizontal
extents are considered TCu clouds. The transition of a TCu cloud into a Cb
cloud can be seen by observing the cloud top. For a TCu cloud this cloud top
will show sharp edges. When enough vertical growth occurs, the cloud top
will reach heights cold enough to form ice crystals. The presence of ice crystals
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Figure 4.2: Daily spread of occurence of Cb (left) and TCu clouds (right) as observed at
Schiphol airport for the day-time summer of the years 2004-2007.

in the cloud top changes the sharp edges into vague, fibre edges.

Besides weather at the airport, also weather phenomena within a radius of 8
km outside the airport area are reported (Postma, 2008). Cb/TCu cloud reports
in METAR are likely not to be completely restricted by this radius. According
to one of the meteorologists at the Schiphol weather station, an important cri-
terion is the cloud base height. If the cloud base is still distinguishable at the
horizon, the cloud is likely to be reported. Furthermore, convective clouds lo-
cated outside the radius may be reported if it is believed that they may pose
serious threat to flight safety in the near future. E.g., this might be the case for a
clearly visible mature cumulonimbus cloud located at a large distance, but hea-
ding into the direction of the airport. The question whether or not a Cb/TCu
cloud is reported remains subject to the professional judgement of the present
meteorologist.

Fig. 4.2 shows the daily spread of Cb and TCu cloud reports from 6 a.m. to 6
p.m. (with a maximum of two reports per hour) for the entire period May 2004
to September 2007 at and in the vicinity of Schiphol airport. A dip can be seen
around noon for both Cb and TCu clouds. Solar surface heating is considered
to be one of the main formation processes of strong convective clouds over
land during the summer. However, the expected increase of Cb reports during
the day with a maximum in the late afternoon is not visible. Yet, there is an
increase of both Cb and TCu cloud reports in the morning, followed by the
dip at around 10 a.m.. At KNMI one explaination has been suggested: the
increase of the reports in the morning followed by the dip in the noon might
be explained by the formation of Cb/TCu clouds over the sea during the night
due to relatively cold air above a warm sea surface. Due to the prevailing
south-west wind direction at the Dutch coastline, these clouds are advected
into the land and therefore might enter the MSG box area during the morning.
Eventually they will die out due to the absence of the warm sea surface. After
midday, the number of Cb/TCu reports may now increase again due to solar
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Figure 4.3: METAR Cb and TCu cloud reports observed at Schiphol airport for the day-
time summer period of the years 2004-2007.

surface heating. In the late afternoon, the clouds may then again be advected
into the land, therefore leaving the MSG box area. The formation of convective
clouds above the sea occurs most often at the end of the summer and autumn.
However, no clear evidence has been seen from the METAR data that most
Cb/TCu clouds reported in the morning occur in late August or September.

Fig. 4.3 shows the monthly Cb/TCu reports for the years 2004-2007. The in-
terannual variability is clearly visible, still for 3 out of 4 years most Cb reports
occur in August. The year 2006 was a very warm year. However, August was
very wet and relatively cold. In that month, convective clouds were produced
almost on a daily basis in the Netherlands. Outside this month, almost no TCu
reports were made in 2006. In contrast to August 2006, August 2007, which
was a relatively dry month, only shows a few Cb reports. In this year, July was
a very wet month with several big storms and the most Cb reports. For the
entire period 2004-2007, least Cb/TCu reports were made in the month May,
followed by June and September. Together, the reports represent 171 convec-
tive days (at least one Cb or TCu METAR report per day) out of 612 days over
the entire period May 2004-Sept 2007, as observed at and in the vicinity of Schi-
phol airport.
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Both figures show that much more Cb cloud reports than TCu cloud reports
(about 14%) have been made. This can be explained by the longer lifetime of
Cb clouds and their greater horizontal and vertical dimensions which makes it
easier to observe them and more likely to report a Cb cloud than a TCu cloud.
Since the number of TCu cloud reports is small compared to the Cb cloud re-
ports and the transition from a TCu cloud to a Cb cloud may not always be
obvious, it has been decided to group the two convective cloud types into one
class. This means that the METAR dataset has been reduced to a dichotomous
dataset. The two groups are: Cb/TCu present and no Cb/TCu present. Cases
with presence of Cb/TCu clouds within the MSG box area at a time step are
called the yes-events (1), while cases with no Cb/TCu presence are called the
non-events (0). This dichotomous dataset now has to be matched to the MSG-
SEVIRI dataset. The dimensions of the MSG box area exceed the formal maxi-
mum observing range of the 8 km radius around Schiphol airport. In the west-
east direction the distance from the center pixel (Schiphol weather tower) to
the MSG box area boarder is about 30 km. For the south-north direction it is 50
km. However as mentioned before, large convective clouds having a relatively
high cloud base (which occurs especially during the summer due to boundary
layer mixing) are likely to be reported as well when they are located at dis-
tances far beyond the formal maximum observing range. The parallax effect in
the MSG data may shift the actual position of convective clouds up to 17 km to
the north in the satellite images. Due to the relatively large distance of 50 km in
the north-south direction from the center pixel in the MSG satellite images, it is
assumed that reported Cb/TCu clouds that were located in the northern part of
the MSG box area will still show up in the MSG satellite images. On the other
hand, Cb/TCu clouds that were located south from the MSG box area and the-
refore too far to be reported at Schiphol, might show up in the MSG satellite
images. At airports only having AUTO METAR, meaning no human observer
is present, Cb and TCu clouds are detected using radar reflectivity data within
a radius of 30 km around the weather station and lightning discharges data
within a radius of 20 km around the weather station (Wauben et al., 2006). The
somewhat greater dimensions of the MSG box area compared to the formal
viewing range of the observer may weaken the statistical relationship (treated
in section 4.3) between the METAR reports and the cloud physical properties
and HRV reflectance. It is assumed that almost all reported Cb/TCu clouds are
located (at least partly) within the MSG box area.

The two hourly METAR time steps are matched to the four hourly MSG time
steps by relating one METAR time step (25 or 55) to two MSG time steps (11 and
26 or 41 and 56), see Fig. 4.4. The four MSG time steps do not fall within the 10
minutes reporting time of the two METAR time steps. However, the difference
between the METAR time period and the two corresponding MSG time steps
only differ by one and four minutes, respectively. It is assumed that within
those one minute and four minute periods the cloud fields within the MSG
satellite image will change very little. Therefore, it will not have significant
effect on the outcome of presence or no presence of Cb/TCu clouds within the
MSG box area at that METAR time step.

Both the METAR and MSG-SEVIRI datasets are divided into a training (de-
pendent) dataset and a validation (independent) dataset. This is done by ran-
domly selecting about 70% of all days using a Bernoulli distributed random

51



4. DATA AND METHOD

Figure 4.4: The four time steps of MSG (black) and the two 10 minute periods of METAR
(red) for a one hour timeline. The numbers indicate the minute past the hour.

variate with a 0.7 probability parameter. Doing the random selection on days
and assuming that cases on different days do not represent the same event
(Cb/TCu cloud) provides for an independent validation dataset. The cases
included in the 70 % selected days will be used to train the Cb/TCu cloud de-
tection method. The cases from the remaining days will be used to validate the
Cb/TCu cloud detection method. Part of the MSG-SEVIRI data are missing
due to problems with the data reception system. The time steps for which the
MSG data were missing have been removed from the MSG-SEVIRI and ME-
TAR dataset. This leads to a 18% reduction of Cb/TCu cases. A total of 1218
convective cases remain.

4.2 CONVECTIVE CLOUD MASK

The first step in the development of a convective cloud detection method is
the Convective Cloud Mask (CCM). The cloud physical properties and HRV
reflectance are used to construct a pixel-based mask for the entire MSG box
area at each time step. Using a thresholding technique the CCM determines
for each pixel whether or not it should pass the mask. The pixels that pass
the CCM are considered to represent potential convective cloud pixels. Pixels
that do not pass the CCM will not be considered in future calculations. The
objective is to reduce as many of the non-convective cases (no Cb/TCu report)
as possible, while at the same time retaining as many of the convective cases
as possible. The cloudy pixels passing the CCM can be considered to form a
hazard map, indicating which pixels might pose a risk to flight safety in the
sense that they represent Cb/TCu clouds. The level of risk will be determined
in the second step of the Cb/TCu cloud detection method.

The principle of the convective cloud mask is to use the cloud physical pro-
perties and HRV reflectance to characterize clouds and therefore also to discri-
minate between different cloud types in a satellite image. Cb and TCu clouds
are dense clouds with great vertical extents. Therefore these clouds exhibit low
cloud top temperatures and are optically thick. When enough vertical growth
takes place ice crystals will be present in the cloud top. A glaciated cloud top
with relatively small effective radius may indicate a mature Cb cloud (anvil).
In satellite infrared imagery, Cb/TCu clouds will appear brighter compared to
lower cumulus clouds. The effective radius of liquid water droplets increases
until precipitation is initiated within the cloud. The presence of ice crystals
in the cloud tops can also initiate precipitation, see subsection 2.1.1 The re-
flectance in the visible, also called cloud albedo, is closely related to the optical
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thickness and is high for Cb/TCu clouds. Therefore, in visible satellite imagery
Cb and TCu clouds will appear bright. Strong convective clouds often exhibit
a lumpy texture, which is caused by shadow effects of the irregularly-shaped
cloud tops. This results into a large spatial variability in satellite images. Ma-
ture Cb clouds often consist of an anvil. The anvil is relatively flat, but is
usually interrupted by overshooting tops. This will again give a lumpy ap-
pearance in certain areas. A group of organized convective cells also shows
a large spatial variablity in the visible satellite image. The spatial variability
in the visible is included in the CCM by using a threshold for the HRV stan-
dard deviation (HRV std) within the MSG box area. The non-convective cirrus
clouds are located at high altitudes and are mostly composed of ice crystals.
Thin cirrus clouds are semi-transparent to sunlight and longwave radiation
emitted at the surface. Therefore, they will have a small optical thickness and a
low cloud top temperature, also due to contamination by the surface radiaton.
Thick cirrus clouds might have a bright appearance in the visible and lower
cloud top temperatures, but show little spatial variability. Stratus clouds can
be optically thick and have a bright appearances in the visible, but have hi-
gher cloud top temperatures, are usually composed of liquid water droplets
and show little spatial variability in the visible. Weak convective clouds such
as stratocumulus clouds can be optically thick, highly reflective and have some
vertical growth, but do not show the same distinct signals as Cb/TCu clouds
do.

A combination of thresholds for the cloud physical properties and the HRV re-
flectance will be used to distinguish between well developed cumulus clouds
and non-convective clouds. From the satellite derived cloud physical proper-
ties the cloud top temperature, optical thickness, effective radius and cloud
phase are used. The 4-8 km cloud physical properties data are interpolated to
the 1-2 km resolution of the visible channel; one pixel of CTT, COT and REFF
is divided into 3x3 pixels, all having the same value. The optimal combina-
tion of thresholds for the cloud physical properties and the HRV reflectance
will be determined using the training dataset. Criterium is that > 95 % of the
convective cases pass the CCM. The combination that obeys this criterium and
at the same time shows a maximum reduction of the non-convective cases will
be used. Furthermore, a minimum number of 10 pixels (∼ 0.005 %) that pass
the CCM at each time step is required to assure statistic significance in future
calculations. This means that the minimum detectable cloud size is about 20

Table 4.2: Values of the cloud physical properties and HRV reflectance that are used to
investigate CCM thresholds.

Range Step
CTT 265 K - 285 K 5 K
COT 5 - 25 5
REFF 8 µm - 16 µm 2 µm
HRV 0.3 - 0.7 0.1
HRV std 0 - 0.1 0.025
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km2. This corresponds to a cloud with a horizontal radius of about 2.5 km,
when assumed a circular shaped cloud. Table 4.2 shows the value ranges and
steps of the cloud physical properties and the HRV reflectance that will be in-
vestigated, yielding 3125 different combinations. The effective radius is only
considered for the liquid water phase. Pixels consisting of the ice phase do not
need to pass the effective radius threshold.

4.3 LOGISTIC REGRESSION

Logistic regression is the second step in the convective cloud detection method.
Logistic regression models are used in situations where one wants to predict
the presence or absence of a characteristic or outcome based on values of a set
of predictor variables. The variable of interest, or dependent variable, has to
take on two values (dichotomous variable), while the predictor variables, or
independent variables, can be of any type. For years, logistic regression has
been used extensively in the medical and social sciences. In meteorological
research, logistic regression has been applied to e.g. short-term forecasting
of thunderstorms (Schmeits et al., 2008), short-term forecasting of premonsoon
convective developments (Dasgupta and De, 2007) and forecasting of large hail
(Billet et al., 1997). Furthermore, it has been used as a tool to investigate the
difference between the present weather reported by a professional and present
weather reports produced by automated weather stations (Merenti-Välimäki
and Laininen, 2002).

In this research, the dependent variable, also called predictand, is the presence
of Cb/TCu clouds at and in the vicinity of Schiphol airport. This is determi-
ned by the METAR reports. A set of predictors will be constructed from the
MSG-SEVIRI derived cloud physical properties, HRV reflectances, HRV-COT
and radar and lightning data. A physical relationship between these predictors
and the presence of convective clouds is assumed. Logistic regression models
return probabilities, which provide a measure of uncertainty. The logistic func-
tion is therefore bounded between 0 and 1 (or 0 and 100 %). This probability
indicates the level of risk of Cb/TCu clouds being present in the MSG box area
for the pixels within the hazard map.

4.3.1 LOGISTIC REGRESSION MODEL

Logistic regressions are fit to a dichotomous predictand using the nonlinear
equation (Wilks, 2006)

P (y) =
1

1 + exp[−(a0 + a1x1 + a2x2 + ...+ anxn)]
(4.1)

in which P (y) is the probability that an event y occurs, xi (i=1, 2 , ..,n) is the set
of predictors and ai (i=0,1, 2, ..,n) are the regression coefficients. In contrast to
linear regression, the dependent variable (y) does not need to be normally dis-
tributed and the residuals do not have to be Gaussian distributed with constant
variance. In fact, in logistic regression models the residuals are Bernoulli va-
riables. Furthermore, the independent variables (xi) need not to be interval
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variables and unbounded. The regression coefficients vary between plus and
minus infinity. A zero regression coefficient indicates that the accompanying
predictor does not contribute to the logistic regression function. The regression
coefficient a0 is the regression coefficient of the constant-only model (intercept),
which is a logistic regression model without any independent variables. In the
case of a model having only one predictor, Eq. (4.1) is an S-shaped curve that is
a function of x1. The fitting procedure of the regression coefficients is iterative
and based on maximum likelihood method. The iterative maximum likelihood
method determines the set of values for the regression coefficients which maxi-
mizes the product of all computed probabilities of the events (Wilks, 2006).
Rearrangement of Eq. (4.1) into

ln

[
P (y)

1− P (y)

]
= a0 + a1x1 + a2x2 + ...+ anxn (4.2)

shows that the logistic regression coefficients can be viewed as linear with res-
pect to the natural logarithm of the odds P (y)

1−P (y) . This rearrangement is called
the logit transformation and the term on the L.H.S. is called the logit. The odds
ratio is the ratio of the odds of an event y occurring in group 1, P1(y)

1−P1(y) , to the

odds of the event occurring in group 2, P2(y)
1−P2(y) . An odds ratio of 1 indicates

that the event is equally likely to occur in both groups. The impact of a pre-
dictor is often explained in terms of odds ratios. The exponent of a regression
coefficient is the odds ratio for the accompanying predictor. For continuous
variables, the odds ratio represents the factor by which the odds of an event
change for a one-unit change in the variable. In general, this change is greater
when the original probability is near 0.5, and smaller when the original proba-
bility is near 0 or 1 (also indicated by the shape of the S-curve).

The overall goodness-of-fit of a logistic regression model can be tested using
the Hosmer-Lemeshow chi-square goodness-of fit test (Hosmer and Leme-
show, 2000). The fitted data is divided into deciles based on predicted probabi-
lities. Using a chi-square distribution, the observed and expected frequencies
are compared. The probability statistics (P-value) is computed from the chi-
square distribution with 8 degrees of freedom. For adequately fitting models,
the P-value should be greater than 0.05. This means that the null hypothesis,
which says that the model predictions are not significantly different from the
observed values, may not be rejected. It does not tell whether much of the
variance is explained by the model, but what is explained is significant. For
small sample sizes (small to moderate sample sizes: n < 400), the Hosmer-
Lemeshow test can be biased toward non-significance, which means that the
model fit will be overestimated. On the other hand, for large sample sizes the
Hosmer-Lemeshow test is likely to find significant P-values for smaller diffe-
rences between observed and model predicted values, even though the model
adequately fits the data. An alternative to the Hosmer-Lemeshow test is the
likelihood ratio test. It is based on the -2 Log Likelihood (-2LL), also called de-
viance, which has an approximate chi-square distribution. The -2LL statistic is
the likelihood ratio and is used to determine the significance of the unexplai-
ned variance in the dependent variable. The likelihood ratio test tests whether
the model with a set of predictors is significantly different from the constant-
only model. A finding of significance (P-value < 0.05) indicates that the model
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is significantly different from the constant-only model and leads to the rejec-
tion of the null-hypothesis that all of the regression coefficients are zero. The
likelihood ratio test is not only used to test the overall model, but also to test
nested models and therefore can be used to test individual independent va-
riables. The difference in -2LL (the smaller, the better) between a model and
its reduced model (dropping the independent variable of interest) should be
significant in order to justify inclusion of that variable in the model. An alter-
native to the likelihood ratio test for testing significance of individual logistic
regression coefficients for each independent variable is the Wald test. It is the
squared ratio of the unstandardized logistic regression coefficient to its stan-
dard error. A non-significance of the Wald statistic suggests that the variable
may be dropped from the model. The likelihood ratio test is generally pre-
ferred over the Wald test, which may lead easily to so called Type II errors
(thinking there is no relationship when there is) due to inflated standard errors
for large regression coefficients. The change in deviance can be used to identify
cases that are poorly fitted by the model. Larger changes in deviance indicate
poorer fit. The deviance statistics are based on the likelihood ratio.

The overall predictive strength, or effect size, of the predictors in a logistic re-
gression model can be described using the odds ratio. The ratio of the odds
ratios of the independent variables indicates the relative importance of the in-
dependent variables with respect to the odds of the dependent variable. Also,
inspecting the 95% Confidence Interval (CI) of the odds ratios (exponent of the
regression coefficient) can be useful. If this interval includes the value 1 (exp[0])
, the effect on the odds of the dependent variable is (near) zero for certain
values of the independent variable. In that case, the independent variable is
mostly not considered a useful predictor. Another way of measuring strength
of association is the use of R2-like measures. In linear regression models, the
R2 measures the percent of variance explained. However, for dichotomous de-
pendent variables the variance depends on the frequency distribution of that
variable and will be maximum for a 50-50 split. Several R2-like measures for
logistic regression have been proposed. The Nagelkerke’s R2 is a modified
Cox and Snell coefficient and can vary between 0 and 1. The R2-like measures
usually take on relatively low values. There is no consensus on what a good
R2 value is and it is generally not used to asses goodness-of-fit but to com-
pare several (nested) models fit to the same data. According to this measure
the model with the largest value is the best model. The discriminative power
of a logistic regression model can be measured by the area under the curve in
a Receiver Operating Characteristic diagram (ROC). In a ROC diagram the 1-

Table 4.3: Values of the area under the ROC curve.

Area Discriminative power
0.5 No discrimination
0.7-0.8 Acceptable discrimination
0.8-0.9 Excellent discrimination
> 0.9 Outstanding discrimination
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FAR (probability that a ”negative case” is correctly identified) is plotted against
the POD (probability that a ”positive case” is correctly identified), producing a
curve. The area under this curve varies between 0 and 1.0. The predicted pro-
babilities for correct cases are always higher than the predicted probabilities
for incorrect cases. An area of 0.5 indicates that the predicted probabilities are
not better than chance. It is the percent of all possible pairs of the dependent
variable (0 and 1) where the correct cases have higher predicted probabilities
than the incorrect cases. Table 4.3 shows general rules suggested by Hosmer
and Lemeshow (2000). It should be noted that the area under the ROC curve
does not provide information about goodness-of-fit. A poor-fitted model may
still have good discriminative power. Furthermore, a frequency histogram of
predicted probabilities, an Attributes diagram and a contingency table can be
used to verify predictions. The contingency table shows the practical results
of using the logistic regression model and will be discussed in the following
section.

4.3.2 PREDICTOR SELECTION

The available MSG-SEVIRI derived cloud physical properties (CTT, COT, REFF
and LWP), as well as the HRV reflectance, are considered potential predictors
as well as the HRV-COT and radar and lightning data. To create a number
of potential predictors several statistics have been calculated, see Table 4.4.
The statistics of the potential predictors have been calculated only for pixels
flagged as convective clouds in the first step of the detection method (CCM).
A minimum of 10 cloudy pixels is required for proper statistical calculations.
The standard deviation is calculated for the entire MSG box area and gives an
indication of spatial variation within the box The median and percentiles are
a measure of proportions of the data that fall below and above certain values
and may be indicative to whether or not (and in what sense) a group of cloudy
pixels posses (relatively) strong signals. The minimum and maximum present
the extreme values present in the MSG box area and the range is the difference
between those values. The use of trends in time of cloud physical properties as
predictors has been investigated. An attempt has been made to create a cloud
tracking algorithm within the MSG box area. However, the spatial resolution
and the MSG box area size were too small for proper cloud tracking and trends
in time for the entire MSG box area showed too much fluctuations to be of any
use.

To get an indication of which set of the derived predictors might result into
a well-performing model, a forward stepwise selection method is used. The
method starts with the constant-only model. At each step the predictor with
the largest score statistics (here: likelihood ratio) and a significance value less
then 0.05 is added to the model. This will continue stepwise until non of the
variables left have a significance value less then 0.05. Predictors that were in-
cluded, but at some step show a significance value above 0.1, are excluded
again. The forward stepwise selection method will be performed on randomly
selected parts (25%) of the training dataset as well as on parts of the dataset
representing different time-of-year and time-of-day periods. The method is
performed over 100 times and selected predictors will be counted. It should be
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Table 4.4: Statistics derived from the MSG-SEVIRI cloud physical properties, HRV re-
flectance, HRV-COT and radar and lightning data for the collection of pixels in the CCM
to create potential predictors.

Cloud Physical Properties Radar Lightning
Mean Mean # flashes (10 min)
Median Minimum
Standard deviation Maximum
Minimum Range
Maximum > 30 dBZ
Range > 40 dBZ
percentiles: 2.5, 17, 25, 75, 83, 97.5

stressed that the forward stepwise selection method is solely based on statisti-
cal criteria and is only used as an indicative method for finding a useful set of
predictors. No perfect model exists and different sets of predictors may result
into (near) equally well-performing models. Furthermore, individual predic-
tors that have weak explanatory power may have large explanatory power as
a group.

Nested models will be compared using the likelihood ratio test, the Nagel-
kerke’s R2 value, the Hosmer-Lemeshow test and the value of the area under
the ROC curve. The number of predictors in the model needs to be limited
in order to prevent over-fitting. Once a useful set of predictors with enough
explanatory power has been identified, the independent variables have to be
examined more closely. For continuous variables the assumption of linearity
in the logit has to be checked. This is done by splitting the continuous va-
riables into quartiles. The lowest quartile serves as a reference state (assuming
a regression coefficient of zero) while for the other three quartiles a dummy
variable is created. The dummy variables will take on a value of 1, if the value
of the independent variable lies within the quartile of the associated dummy
variable, and will be zero otherwise. The regression coefficients of the three
dummy variables will be determined by newly performing the logistic regres-
sion and plotted against the mid-points of the quartiles. For linearity, the in-
crease or decrease in the regression coefficients should be linear with respect to
the quartiles. When the relation is not linear, a correct parametric relationship
has to be found. Incorrect parametric relationships may reduce the statistical
relationship between the predictors and the predictand. Interaction between
two independent variables can be tested in the same manner as nested mo-
dels. An interaction term can be created by multiplying the two independent
variables. The model chi-square, which is -2LL for the model including the
interaction term minus -2LL for the reduced model, should have a significant
reduction in order to include a interaction term in the model.
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4.4 VALIDATION

The validation of the Cb/TCu cloud detection method will be performed on
the validation dataset using predicted probabilities and predicted group mem-
bership.

4.4.1 PREDICTED PROBABILITIES

Once the logistic regression function has been determined from the training
dataset, it will be used to calculate predicted probabilities for the cases in the
validation dataset. A common scalar accuracy measure for verification of pro-
babilistic forecasts of dichotomous events, which here will be used to verify
detection, is the Brier Score (BS) and it is given by (Wilks, 2006)

BS =
1
n

n∑
k=1

(yk − σk)2 (4.3)

in which yk and σk are the predicted probability and observation respectively
of n detection-event pairs. The observation is σ = 1 if the event occurs and
σ = 0 if the event does not occur. The Brier score is the mean squared error
of the detection probabilities. Since the probabilities and observations are both
bounded by zero and one, so is the BS. It is negatively orientated which means
that for a perfect forecast BS=0. The BS can be algebraically decomposed (Mur-
phy, 1973) into three terms:

BS = I + II + III (4.4)

in which

I =
1
n

I∑
i=1

Ni(yi − σ̄i)2 (4.5)

II = − 1
n

I∑
i=1

Ni(σ̄i − σ̄)2 (4.6)

III = σ̄(1− σ̄) (4.7)

with

n =
I∑
i=1

Ni (4.8)

Here yi is the predicted probability, Ni is the number of event-pairs and σ̄i is
the subsample relative frequency of one of the I subsamples. Furthermore, σ̄
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is the sample climatology of the observations. Usually the predicted proba-
bilities and observed relative frequencies are compared by dividing the data
into deciles, which leads to 10 subsamples. The first term I , is called the Re-
liability and should be as small as possible. It is the weighted average of the
squared difference between the predicted probability yi and the observed re-
lative frequency of the event in each subsample. The relative frequency of the
event should be small for low values of the predicted probability yi (near 0)
and should be large for high values (near 1). For perfect reliable detections the
subsample relative frequency should be equal to the predicted probability in
each subsample. The second term II , is called the Resolution and should be
as large as possible. It is the weighted average of the squared difference bet-
ween the subsample relative frequencies and the overall sample climatological
relative frequency and measures the ability of the predicted probabilities to dis-
cern subsample predicted probability with different relative frequencies of the
event. For large values of the Resolution, the predicted probabilities resolve
the event well. The third term III , is called the Uncertainty and only depends
on the sample climatological relative frequency, meaning the variability of the
observations. It will be small when the event almost never happens or almost
always happens. For a climatological probability only, the Reliability will be
zero as well as the Resolution term. Then, the BS equals the Uncertainty term.

From the Brier score the Brier Skill Score (BSS), a relative accuracy measure,
can be computed using a BS score of a reference probability (Wilks, 2006).

BSS = 1− BS

BSref
(4.9)

Climatological relative frequencies are often used as reference probabilities. If
the reference probability is defined by the sample climatology, the BSS can be
rewritten into

BSS =
Resolution−Reliability

Uncertainty
(4.10)

Since the Uncertainty is always positive, the predicted probabilites will exhi-
bit positive skill when the Resolution term is larger than the Reliability term.
In this research the sample climatology of the available cases in the METAR
dataset are used as the reference probability.

4.4.2 CLASSIFICATION

To analyse and validate the results of this study for parctical applications, the
probabilities from the logistic regression model have been converted into a di-
chotomous dataset describing cases of presence or absence of Cb/TCu clouds
within the MSG box area at a given time step. These cases can be classified
by converting the predicted probabilities into predicted group memberships
using probability threshold. A probability threshold of 0.5 says that cases with
a predicted probability of less then 0.5 will be assigned a value of 0, while
predicted probabilites of 0.5 and above will be assigned a value of 1. What is
considered a useful probability threshold may differ for different application
areas and objectives. Once the predicted probabilites are converted into group
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Table 4.5: The contingency table for a dichotomous predictand.

Observed 1 Observed 0
Detected 1 Hits False Alarms
Detected 0 Misses Correct negatives

membership, a contingency table can be used to determine verification scores,
see Table 4.5.

The data in the contingency table can be displayed in counts or relative fre-
quencies, which is counts divided by the number of predictions n. The hits are
the yes-events that are predicted correctly, while the false alarms are the non-
events that were predicted as yes-events. Misses are the yes-events that were
predicted as non-events and the non-events that were predicted correctly are
the correct negatives. From the contingency table several scalar attributes can
be calculated: ACCuracy (ACC), Probability Of Detection (POD), False Alarm
Rate (FAR), Critical Succes Index (CSI) and the Bias (Wilks, 2006).

ACC =
Hits+ Correct negatives

n
(4.11)

POD =
Hits

Hits+Misses
(4.12)

FAR =
False alarms

Hits+ False alarms
(4.13)

CSI =
Hits

Hits+Misses+ False alarms
(4.14)

BIAS =
Hits+ False alarms

Hits+Misses
(4.15)

All scalar attributes, except the Bias, have values between 0 and 1. The ACC,
POD and the CSI are positively oriented, which means that 1 is the best score,
while the FAR is negatively oriented, which means that 0 is the best score. The
accuracy is just the proportion correctly predicted cases. Correctly predicted
yes-events and non-events are equally credited and false alarms and misses
are equally penalized. The conditional probabilities POD and FAR are used
to asses discrimination. The POD is the fraction of the cases were a yes-event
was predicted and also observed. The FAR is the fraction of the cases were a
yes-event was predicted but not observed. When the yes-events are rare com-
pared to the non-events the dataset is unbalanced and correct predictions of
the non-events can be made easily, which results into a large number of correct
negatives. Including the correct negatives may lead to overoptimistic result,
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therefore the ACC may not be the most desirable scalar attribute to asses per-
formance of the detection method. The CSI does not include the correct nega-
tives and therefore is a more useful scalar attribute when yes-events are rare.
It is the proportion correctly predicted cases after the removal of the correct
negatives. The Bias is the ratio of the number of predicted yes-events to the
number of observed yes-events and compares the average prediction with the
average observation. An unBiased detection method has Bias=1, while a Bias
>1 indicates overwarning of the yes-events. A Bias between 0 and 1 indicates
underforecasting.

Two methods for finding a useful probability threshold of the predicted proba-
bility often used are based on the CSI and the Bias (Wilks, 2006). When the CSI
is used, the probability threshold which maximizes the CSI is selected, while
using the Bias the probability threshold which produces a Bias closest to 1 is
used. Objective of this research is to decrease FAR and to increase POD. Ho-
wever, a decrease in FAR is accompanied with a decrease in POD. In this study,
priority is given to an increase of the POD and therefore to accept an increase
in the FAR. This will lead to overwarning, but is considered to be safer to avia-
tion than underwarning. Since the maximum CSI and Bias closest to 1 do not
necessarily occur at the same probability threshold, both CSI and the Bias, with
respect to the POD and FAR, will be examined to find the optimal probability
threshold.
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5th Chapter

RESULTS

This chapter describes the results obtained from the convective cloud mask and
the logistic regression analysis. The Cb/TCu cloud detection method is deve-
loped using the training dataset and is validated using the validation dataset.

5.1 CONVECTIVE CLOUD MASK

Investigation of the different threshold combinations of the MSG-SEVIRI cloud
physical properties and HRV reflectance and the requirement of at least 95% re-
tained yes-events (in the training dataset) yielded the following ’best’ threshold
combination as shown in Table 5.1.

Pixels passing the CCM represent clouds that have a maximum cloud top tem-
perature of 275 K, a minimum optical thickness of 10, a minimum effective ra-
dius of 12 µm for liquid water droplets or presence of ice crystals in the cloud
top and a minimum cloud albedo of 60%. The standard deviation of the HRV
within the box should be 0.025 minimum. A cloud top temperature threshold
of 275 K does not seem very strict, since it is a few degrees above zero. Ho-
wever in summer, cloud top temperatures will be higher at same heights than
in winter. Clouds with an optical thickness > 8 are considered thick clouds.
The effective radius of 12 µm is close to the threshold of 14 µm ,which is often
considered to be the threshold at which particles have grown large enough to
initiate the precipitation process, see Chapter 3. The HRV reflectance is well
above the 40% threshold value used in the convective cloud mask for detection
of convective initiation (not full-grown TCU or Cb clouds) of Mecikalski and

Table 5.1: Best threshold combination CCM.

CTT COT REFF HRV HRV std
275 K 10 12 µm 0.6 0.025
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Figure 5.1: Number of convective cloudy pixels within the MSG box area per time step
for 7 August 2004.

Bedka (2006), see Chapter 3. It is below reflectance values usually assumed for
thick convective clouds (>80%).

For the training dataset, this best threshold combination resulted into the re-
tainment of 96,5% of the yes-events and 34,3 % of the non-yes-events. For the
validation dataset, 95.9% (53 out of 54 days with yes-events) of the yes-events
pass the CCM while it is only 35,3% of the non-events. With a POD of 95.9%
for the yes-events, the FAR and CSI become 74.54 % and 25.18 %, respectively.
The total time steps of 11928 have been reduced by 60%, leaving 4887 time
steps which are assigned a hazard map (1173 yes-events and 3714 non-events).
From the hazard maps, the probability of risk is determined in the second step
of the Cb/TCu cloud detection method.

On average 17,6% of the pixels in the MSG box area pass the CCM. For yes-
events passing the CCM the average cloudy pixel percentage is 21,7%, while
for non-events it is 16,3%. The average of the percentage of cloudy pixels is
highest for time steps in the late morning (10-12h) for yes-events (24,6%) and is
lowest for time steps in the early morning (6-10h) for non-events (15,0 %). The
4% of the yes-events that do not pass the CCM mostly occur on different days.
Relatively many non-events have been filtered out after 15 p.m. and between
8 and 10 a.m.

The day 7 August 2004 is presented to demonstrate the Cb/TCu cloud detec-
tion method. On these day two Cb reports were made, one at 10.55 a.m. and
one at 11.25 a.m.. These yes-events are part of the validation dataset. A number
of thunderstorms have been reported in the southern half of the Netherlands
during the morning (Weerspiegel, Aug 2004). Fig. 5.1 shows a graph of the
number of pixels passing the CCM during the day, with a maximum around
11 a.m.. This maximum coincides well with the time of the Cb reports. Fig. 5.2
shows the pixels that pass the HRV reflectance threshold, CTT threshold and
COT threshold at 10.56 a.m. The lower right image shows the result of the
CCM. About 55 % (1118) of the pixels passed the CCM. Together, these cloudy
pixels construct the hazard map for that specific time step. The level of risk for
the hazard map is determined in the second step of the Cb/TCu cloud detec-
tion method.

Radar data within the MSG box area show that over 300 cloudy pixels have
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Figure 5.2: An example of the CCM for 7 August 2004 at 10:26 UTC. The HRV mask
(upper left), the CTT mask (upper right), the COT mask (lower left) and the end result
of the CCM (lower right) are shown.

dBZ values above 30 dBZ and 19 pixels have dBZ values above 40 dBZ, indica-
ting moderate to heavy rain rates, see subsection 2.2.4. Fig. 5.3 shows rain rates
derived from radar reflectivity data. An area of moderate to heavy rain rates
is located over Schiphol and seems to coincide well with the cloudy pixels in
the CCM, keeping in mind the parallax effect for satellite data. Data from the
lightning detection network shows that 24 flashes have been detected within
the MSG box area over the last 10 minutes.

Figure 5.3: Rain rates (mm/h) developed from radar reflectivity data on 7 August 2004
at 10.25 UTC (KNMI weather radar). The green lines indicate the MSG box area around
Schiphol.
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5.2 LOGISTIC REGRESSION

The construction of a logistic regression model has been performed in 3 steps.
The first step only considers potential predictors derived from the MSG-SEVIRI
cloud physical properties and HRV reflectance. The second step also includes
a HRV cloud optical thickness. In the third step, lightning and weather radar
data are included as well.

5.2.1 STEP 1: MSG-SEVIRI CLOUD PHYSICAL PROPERTIES AND HRV
REFLECTANCE

Forward stepwise selection method is performed over 100 times for randomly
selected parts (25%) of the training dataset as well as for parts of the dataset
sorted by day-of-time and day-of-year. The predictors derived from the HRV
reflectance are selected most frequently. In fact, the HRV range predictor is
chosen >95% of the time. It is followed by the REFF median, CTT range and
CTT median predictors (all >75%). Predictors derived from COT and LWP
were selected least frequently and about 20 % of the predictors have not been
selected at all. The forward stepwise selection method did not show any signi-
ficant difference in the set of selected predictors for different periods during
the day (morning, midday, afternoon) or the year (spring, early summer, late
summer).

Performing logistic regression on the complete training dataset and using the
likelihood ratio test reveals that the HRV range predictor leads to the largest si-
gnificant reduction in the -2LL value. It is again followed by the REFF median,
CTT range and CTT median, see Table 5.2. Comparing nested models shows
that a number of other predictors show a significant statistic in the likelihood
ratio test and an increase in the explained variance (Nagelkerke’s R2).

For the four most frequently selected predictors, the Hosmer-Lemeshow test
shows significant statistics (P < 0.05), which states that the model does not
adequately fit the data. However, when the number of cases is randomly redu-
ced by 50%, the Hosmer-Lemeshow statistic always becomes non-significant.
Despite the fact that more predictors contribute to a significant contribution
to the -2LL value, the maximum number of predictors is limited in order to

Table 5.2: The comparison of nested models for the four most frequently selected pre-
dictors in the forward stepwise selection method.

-2LL N. R2 H.&L. stat. ROC (val=1)
Constant-only 3822,953 - - -
+ HRV range 3098,901 0.281 0.000 0.818 (0.802-0.833)
+ REFF median 2994.378 0.300 0.000 0.817 (0.801-0.833)
+ CTT range 2923.893 0.341 0.000 0.826 (0.810-0.843)
+ CTT median 2877.675 0.356 0.003 0.834 (0.818-0.850)
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prevent the problem of over-fitting. Furthermore, a large number of sets of
MSG-SEVIRI derived predictors might result into (near) equally performing
models, since all cloud physical properties and the HRV reflectance have a
scientific relation to the predictand. Due to correlations among the predictors,
several subsets of predictors may essentially give similar information about the
predictand. Therefore, as a final set of predictors, the set consisting of the four
most frequently selected predictors (as listed in Table 5.2) is chosen, and the
subsequent logistic regression function is examined more closely.

First, the linearity in the logit for the continuous independent variables has
been checked. Fig. 5.4 shows graphs were the regression coeffiecients for the
last three quartiles (taking the first quartile as a reference state with a regression
coefficient of zero) are plotted aginst the mid-points of the four quartiles. For
linearity in the logit, the increase/decrease of the regression coefficient should
be linear with the mid-points of the quartiles. The HRV range and CTT range
predictors show reasonable linearity and significant regression coefficients ac-
cording to the -2LL and Wald statistics. The J-shaped curve of the REFF median
predictor shows the existence of a turning point. The regression coefficient
changes from a negative to a positive sign, which means that the predictand
becomes inversely related to the predictor above a certain point. To overcome
the non-linearity with the logit for a continuous indepedent variable, it can be
converted into a categorical variable whereby seperate regression coefficients
are calculated for the different categories. For the REFF median predictor, the
regression coefficients of the second and third quartile have non-significant -
2LL and Wald statistics and therefore are removed from the logistic regression
model. This means that only for cases with high median values in the REFF
(above ≈ 16µm), the predictor contributes (positively) to the logistic regres-
sion function. The regression coefficients of the CTT median quartiles all have
negative values, but do not show linearity with the logit. Now only the first
quartile has a significant -2 LL and Wald statistic and the other two regression
coefficients are also removed from the model.

In terms of the logit transformation the logistic regression function looks as
follows:

ln

[
P (y)

1− P (y)

]
= −2.333+0.063∗x1 +1.222∗x2 +0.044∗x3−0.494∗x4 (5.1)

where x1, x2, x3 and x4 represent the independent variables HRV range, REFF
median, CTT range and CTT median respectively, as listed in Table 5.3. The
sixth column lists the 95% confidence intervals of the regression coefficients.
The third column shows the value of the Wald test and the fourth column its
significance statistics. All four predictor have a significant (statistics < 0.05)
contribution to the model. This is also reflected by the values in the sixth co-
lumn, which lists the 95% confidence intervals of the regression coefficients.
For non of the regression coefficients the value 1 is included within their confi-
dence interval.

The first term on the R.H.S. of Eq. (5.1) is the constant of the model. The HRV
range, REFF median and CTT range show an increase in the odds for a one unit
increase. The positive relation of the HRV range to the predictand is possibly
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Figure 5.4: Linearity check for the four predictors of step 1 with respect to the regression
coefficients of the quartiles. The dotted line represents the zero regression coefficient
(first quartile) line.

related to the shadow effects at convective cloud tops. Due to the bulbuous to-
wers or overshooting tops, some parts of the cloud tops will have a reflectance
close to one (or 100 %) for the sun-satellite geometry. Other parts of the cloud
top will be located in shadowed areas and therefore will have low reflectance
values. The increase of reflectance in certain areas and the decrease of reflec-
tance in other areas leads to a larger HRV range value. Also the presence of
convective clouds in different stages of convective development in a satellite
image may lead to larger ranges. The REFF median is positively related to the
predictand for high values (> 16 µm). This means that for clouds already exi-
biting areas with particles with relatively large effective radius, an increase of
the area with larger particles or an increase of the effective radius will lead to
an increase in odds of the yes-event (Cb/TCu present) occuring. The relatively
large particles may be related to the presence of relatively large ice crystals
(here between 6 and 51µm) in the cloud top, especially in the convective re-
gions (not the anvil). A large CTT range may also be evidence of variation in
cloud top heights, for example the difference between the temperature of the
overshooting top and lower clouds within the MSG box area. The overall cloud
top temperature however, should decrease when convective clouds are present
within the MSG box area. This can be seen by the negative relation of the CTT
median to the predictand.
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Table 5.3: Regression coefficients and their statistics for the training dataset: step1

a Wald Sig. Exp(a) C.I. 95%
x1: HRV range 0.063 283.354 0.000 1.065 1.057-1.072
x2: REFF median 1.222 116.772 0.000 3.395 1.037-1.053
x3: CTT range 0.044 142.681 0.000 1.045 2.778-4.149
x4: CTT median -0.494 16.795 0.000 0.610 0.482-0.773

In terms of odds and probabilities, the function can be understood as follows.
For the HRV range (reflectance in %) an increase of 10 % in reflectance, with
other variables held constant, results into an increase in the odds of the event
occuring by a factor of exp(0.063)10 = 1.88. For CTT range an increase of 10 K
is an increase in odds by a factor of exp(0.044)10 = 1.55. For the REFF median
and CTT median predictors the odds change by a factor of exp(1.222)1 = 3.39
and exp(−0.494)1 = 0.610 when values are within the third and first category,
respectively. A HRV range of 30%, a CTT range of 40 K, a REFF median of 18
µm and a CTT median of 250 K within the MSG box area result into odds of
12.67 and a subsequent probability of 92.7%.

The 6 possible interaction terms have been investigated, but non were consi-
dered to have a significant contribution to the logistic regression model. The
statistics of the final logistic regression models are shown in Table 5.4.

Table 5.4: Statistics of the final logistic regression model for the training dataset: step 1

-2LL N. R2 H.&L. ROC
2843.713 0.367 0.001 0.823

The area under the ROC curve has a value of 0.823 (95% confidence interval:
0.797-0.848) for the validation dataset, which can be considered excellent dis-
crimination according to Hosmer and Lemershow. Table 5.5 shows the Brier
and Brier skill score. The Brier skill score is clearly positive indicating skill
over sample climatology.

Fig. 5.5 shows the frequency histogram of the predicted probabilities for the
validation dataset. The predicted probalities have been divided into deciles. A

Table 5.5: Brier score and Brier skill score for the validation dataset: step 1

BS BSS REL RES UNC
0.139 0.455 0.004 0.055 0.190
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Figure 5.5: Histogram of the predicted probabilities for the validation dataset: step 1.
The light grey bars show the frequency distribution of the predicted probabilities for
the non-events. The dark grey bars show the frequency distribution of the predicted
probabilities for the yes-events. N , N0 and N1 are the total number of events, non-
events and yes-events, respectively.

desired U-shape (larger bins at lower and higher deciles) is not visible. This is
often the case when yes-events are relatively rare. The predicted probabilities
of the yes-events do not show a tendency towards the higher values. However,
for the higher predicted probabilities the relative frequency of the yes-events
is larger than the frequency of the non-events. Furthermore, over more than
a half of the non-events is located within the 0-10 % bin and over more than
three quarters is located within the 0-20 % bins.

The attributes diagram in Fig. 5.6 compares the predicted probabilities to the
observed relative frequencies. The predicted probabilites have been divided
into deciles, and the numbers within brackets in the diagram represent the
number of cases within each decile bin. The no-resolution line relates to the
Resolution term of the BSS and represents the level of the sample climatology.
Points in the attributes diagram that have a relatively large distance to that line
will have large contributions to the Resolution. The no-skill line is midway
between the 1:1 perfect-reliability and no-resolution line. Points that are closer
to the perfect-reliability line than to the no-resolution line contribute positively
to detection skill. Here, the subsamples show good Resolution and all have
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Figure 5.6: Attributes diagram for the validation dataset: step 1. The number in the
brackets represent the number of events found in the decile. N is the total number of
events.

a positive contribution (Resolution > Reliability). Most points lie to the right
of the perfect-reliability line indicating that the predicted probabilities are too
large relative to the observed relative frequency. The average predicted num-
ber of the yes-events is larger than the observed number of yes-events, which
signals overwarning (Bias 1).

A probability threshold is used to convert the predicted probabilities into the
dichotomous predictand: presence or absence of Cb/TCu clouds within the
MSG box area at a given time step. Fig. 5.7 presents several verification scores
for probability thresholds between 5 % and 95 %, as well as the dependence of
CSI on FAR and bias. Cases with predicted probabilites below the probability
threshold are labeled as non-events, while cases with predicted probabilites
above the probability threshold are labeled as yes-events. The POD and FAR
decrease for increasing probability thresholds. The ACC reaches maximum
values at probability thresholds around 50-60 %. The CSI has a maximum value
of 44.8 % at a probability threshold of 35 %. At this probability threshold the
Bias, with a value of 1.05, is closest to 1. The value indicates slight overwarning
for the yes-events. The corresponding ACC, POD and FAR are 80.1 %, 63.3 %
and 39.6 %, respectively. Finally, the results from the logistic regression model
have to be combined with the results from the CCM. This leads to a final POD
of 60.7 % and a FAR of 39.6 %.
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Figure 5.7: Verification scores for the validation dataset: step 1. The upper panel shows
several verification scores as a function of probability threshold (5 % to 95 % in steps
of 5 %). The lower left panel shows FAR as a function of CSI for several probability
thresholds. The lower right panel shows Bias as a function of CSI for several probability
thresholds. For the two lower panels, the probability threshold increases from upper to
lower points.
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5.2.2 STEP 2: HRV-COT

The frequent selection of the HRV derived predictors in the previous section
very possibly reflects the importance of a high spatial resolution in satellite
images. The frequent selection of the HRV range can be understood by loo-
king at high resolution satellite images in the visible, see Fig. 2.2 and Fig. 2.6.
Convective clouds exhibit geometrical structures (bulbuous towers) that cause
shadow effects due to differences in height. When looking from a satellite
(with a certain angle) at the top of these clouds, very bright and also some
dark areas will be visible. The difference between the maximum reflectance (in
highlighted areas) and the minimum reflectance (in shadowed areas) will be
large. Even for mature Cb clouds with a relatively flat anvil, dark pixels may
be present due to shadow effects caused by an overshooting top. For a layer of
non-convective clouds, the cloud tops exhibit less variation in height, therefore
creating less shadow effects. The MSG-SEVIRI cloud physical properties are
not derived on a high spatial resolution. To investigate the predictor potential
that high resolution cloud physical properties might have, an estimated high
resolution cloud optical thickness has been derived from the HRV channel.

Performing forward stepwise selection shows that the HRV-COT derived pre-
dictors are the most frequently selected predictor. The HRV-COT range is selec-
ted most frequently followed by the HRV-COT minimum. Again, CTT median
and REFF median are selected over 75% of the times. In contrast, CTT range
does not have any significant contribution to the model anymore. The HRV-
COT range and minimum and the CTT median and REFF median predictors
are included in the logistic regression model. Again the linearity in the logit
is checked using dummy variables derived from the quartile values of the pre-
dictors. From Fig. 5.8 it can be seen that the HRV-COT range predictor shows
an acceptable linear relationship with the logit. The HRV-COT minimum pre-
dictor shows a deminishing decrease of the regression coefficient for increasing
values and will be converted into a new parametric relationship by taking the
square root of the values. The REFF median again shows the J-shaped curve
and a significant regression coefficient only for the higher REFF median values.
The CTT median does not seem to have a very convincing linear relationship,
but shows increasing negative regression coefficents for increasing values of
the CTT median and all regression coefficients have significant contribution to
the model. Therefore, the CTT median predictor will be left unchanged. No
significant interaction terms have been identified.

Table 5.6: Regression coefficients and their statistics for the training dataset: step 2

a Wald Sig. Exp(a) C.I. 95%
x1: HRV-COT range 0.33 201.571 0.000 1.033 1.029-1.038
x2: CTT median -0.055 186.273 0.000 0.947 0.930-0.954
x3: HRV-COT minimum -0.775 164.430 0.000 0.463 0.412-0.521
x4: REFF median 1.212 120.971 0.000 3.361 2.708-4.171
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Figure 5.8: Linearity check for the four predictors of step 2 with respect to the regression
coefficients of the quartiles. The dotted line represents the zero regression coefficient
(first quartile) line.

The regression coefficients of the predictors are shown in Table 5.6. Just as the
HRV range predictor, the HRV-COT range predictor has a positive regression
coefficient. The REFF median predictor shows a regression coefficient close
to the regression coefficient in step 1. The regression coefficient of the CTT
median predictor is now much smaller, but still negative. The HRV-COT mini-
mum has a negative regression coefficient, indicating that the odds of the yes-
event occuring decrease for an increasing minimum value of the HRV-COT.
This may be related to parts of the anvils of Cb clouds, which may have relati-
vely low minimum cloud optical thickness (less dense and thick), see Fig. 2.2.

The statistics of the final logistic regression models are shown in Table 5.7. With
respect to step 1, the -2LL decreased and the Nagelkerke’s R2 and value of

Table 5.7: Statistics of the final logistic regression model for the training dataset: step 2

-2LL N. R2 H.&L. ROC
2670.932 0.422 0.146 0.862
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Table 5.8: Brier score and Brier skill score for the validation dataset: step 2

BS BSS REL RES UNC
0.130 0.491 0.005 0.065 0.190

the area under the ROC curve increased, which indicates an improved model
performace. Furthermore, the Hosmer-Lemeshow statistic now indicates an
adequate data fit of the model. The area under the ROC curve has increased
to a value of 0.852 for the validation dataset. The reliability term in the BSS
shows a little decrease, however the increase in the resolution term is larger,
which results into an increase in the BSS, see Table 5.8.

Figure 5.9: Histogram of the predicted probabilities for the validation dataset: step 2.
The light grey bars show the frequency distribution of the predicted probabilities for
the non-events. The dark grey bars show the frequency distribution of the predicted
probabilities for the yes-events. N , N0 and N1 are the total number of events, non-
events and yes-events, respectively.
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Figure 5.10: Attributes diagram for the validation dataset: step 2. The number in the
brackets represent the number of events found in the decile. N is the total number of
events.

With respect to the probability histogram of step 1, the predicted probabilities
for the yes-events in Fig. 5.9 show more variation between the deciles, espe-
cially for higher values of the predicted probabilities. Over 80% of the non-
events are located in the two lowest deciles.

The attributes diagram in Fig. 5.10 shows overwarning for the higher predicted
probabilities and slight underwarning for the lowest predicted probabilities. A
relatively large anomaly can be seen for the fifth decile.

Fig. 5.11 presents the verification scores for probability thresholds between 5
% and 95 %. All verification scores show for increasing probability thresholds
the same behaviour as in step 1. A maximum CSI, with a value of 47.5 %, can
be found at a probability threshold of 25 %. However, between probability
thresholds 25 % and 40 % the CSI changes less then 1 %. For the final results,
the probability threshold of 35 % will be taken, since at this value the Bias,
which is 0.98, is closest to 1. This Bias indicates very slight underwarning of
the yes-events. At this cut-off the CSI and ACC values are 46.1 % and 81.6
%, respectively. This is an increase for both scores with respect to the scores
from step 1. The FAR shows a decrease of several percent, while the POD,
with a value of 63.0, % is almost unchanged. The decrease in the FAR can also
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be understood from a visual inspection of the probability histograms. In the
second step, more non-events have moved to the left side of the probability
threshold, while the number of yes-events at the right side of the probability
threshold almost remained unchanged. Combining the results with the results
from the CCM leads to a final POD and FAR of 60.4 % and 35.8 %, respectively.

Figure 5.11: Verification scores for the validation dataset: step 2. The upper panel shows
several verification scores as a function of probability threshold (5 % to 95 % in steps
of 5 %). The lower left panel shows FAR as a function of CSI for several probability
thresholds. The lower right panel shows Bias as a function of CSI for several probability
thresholds. For the two lower panels, the probability threshold increases from upper to
lower points.
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5.2.3 STEP 3: RADAR AND LIGHTNING DATA

As a final step in this research, predictors derived from weather radar and
lightning data are included in the forward stepwise selection method. Due to
errors within the new dataset, the number of available correct cases has been
reduced by 16 % (49 days) for the yes-events and 12 % for the non-events.

The forward stepwise selection method revealed that the maximum dBZ value
(RR maximum) within the MSG box area is an important predictor within the
logistic regression model. In contrast, the lightning derived predictor is selec-
ted < 5% of the time. This is consistent with the results from a KNMI report,
which states that data from the lightning detection network had little effect on
the performance of the automated detection method (Wauben et al., 2006). Next
to the maximum dBZ value, the predictors from the previous step are the most
frequently selected predictors. Furthermore, the REFF standard deviation will
be included in the model, since now its contribution is considered significant.

The linearity with the logit is checked for the six predictors in the new logistic
regression model. The HRV-COT range, HRV-COT minimum, REFF median
and CTT median predictors show the same relationship to the logit as in step
2 (not shown). Again only the third category of the REFF median will be in-
cluded as an predictor. In contrast, now all categories of the CTT median pre-
dictor show significant contribution to the logistic regression model and the
regression coefficient of the first quartile of the HRV-COT range predictor is
non-significant. The HRV-COT minimum is again converted into a new pa-
rametric relation by taking the square root of the values. The RR maximum
shows the same J-shape curve as the REFF median predictor. The non-linearity
with the logit is overcome by only taking the regression coefficient of the fourth
quartile (> 31 dBZ) as a predictor. The regression coefficients of the first two
quartiles do not show a significant contribution to the model. This means that
for a maximum dBZ value above 31 dBZ, the RR maximum predictor has a
positive contribution to the calculated probability. It is close to the value of 29
dBZ used in the present KNMI automated detection method. The REFF stan-
dard deviation has a possitive regression coefficient for all quartiles, but does
not show a linear relationship with the logit. Only the regression coefficient of
the first quartile has a significant contribution to the model and will be inclu-
ded in the model. This means that for REFF standard deviations between 1.7
and 3.3 µm, the predictor has a positive contribution in the model, while for
values below 1.7 and above 3.3 µm no contribution is made. Too low standard
deviation may suggest the presence of homogenous cloud layer such as a layer
of thick stratus cloud with high enough reflectance, vertical growth, optical
thickness and effective radius to pass the CCM. Convective clouds, especially
a mature Cb cloud with anvil, may not have very large spatial variabilities for
the effective radius.

The regression coefficients of the predictors are shown in Table 5.9. The HRV-
COT minimum and CTT median predictors have similar regression coefficients
compared to step 2. However, the regression coefficients of the REFF median
predictor decreased a little and the regression coefficient of the HRV-COT in-
creased. The RR maximum predictor is positive which means that for increa-
sing maximum dBZ values within the MSG box area, the odds of the yes-event
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5.2 LOGISTIC REGRESSION

Table 5.9: Regression coefficients and their statistics for the training dataset: step 3

a Wald Sig. Exp(a) C.I. 95%
x1: HRV-COT range 1 1.262 64.413 0.000 3.554 2.607-4.845
x2: HRV-COT range 2 2.050 152.835 0.000 7.700 5.614-10.755
x3: HRV-COT minimum -0.61 86.283 0.000 0.538 0.472-0.614
x4: CTT median -0.052 131.881 0.000 0.949 0.940-0.957
x5: REFF median 1.022 63.241 0.000 2.779 2.160-3.575
x6: REFF std 0.112 22.118 0.000 1.118 1.067-1.171
x7: RR maximum 1.022 77.852 0.000 2.821 2.241-3.552

occuring increase. The same is true for the REFF standard deviation predictor.

From Table 5.10 it can be seen that model performance increased substantially
compared to step 1 and step 2. The -2LL value has made a large decrease
and the Nagelkerke’s R2 and ROC value show a relatively large increase. The
Hosmer-Lemeshow test statistics indicates that the model adequately fits the
(training) data.

Table 5.10: Statistics of the final logistic regression model for the training dataset: step3

-2LL N. R2 H.&L. ROC
2123.154 0.489 0.540 0.882

Again over 80% of the non-events are located in the two lowest deciles. Com-
pared to the predicted probability histograms of step 1 and step 2, more yes-
events have moved to the higher predicted probabilities, which indicates better
discrimination between the non-events and yes-events.

The area under the ROC curve has a value of 0.872 for the validation dataset,
which shows more discriminative power than step 1 and 2. Just as in step 1
and step 2 the values of the area under the ROC curve for the training dataset
and validation dataset only differ by a value of about 0.01. This means that the
model has near-equal discrimanative power for both training and validation
dataset.

The reliability term in the BSS has decreased compared to step 2, leading to an

Table 5.11: Brier score and Brier skill score for the validation dataset: step 3

BS BSS REL RES UNC
0.123 0.496 0.003 0.065 0.186
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5. RESULTS

Figure 5.12: Histogram of the predicted probabilities for the validation dataset: step 3.
The light grey bars show the frequency distribution of the predicted probabilities for
the non-events. The dark grey bars show the frequency distribution of the predicted
probabilities for the yes-events. N , N0 and N1 are the total number of events, non-
events and yes-events, respectively.

increase in the BSS. The resolution is unchanged. However, the reliability and
resolution terms from step 3 can not be compared directly to the ones from step
1 and 2 due to a different uncertainty. The BSS shows an increase with respect
to the BSS from step 3.

The attributes diagram in Fig. 5.13 shows slight under- and overwarning for
different deciles of the predicted probabilities. However, the decrease in the
reliability term can be visually seen by noticing that all points are located close
to the 1:1 perfect-reliability line. Furthermore, all points have a positive contri-
bution to the BSS over sample climatology.

Fig. 5.14 shows that the maximum CSI, with a value of 49.8 %, is located at a
probability threshold of 35 %. However, for this probability threshold the Bias
is 1.16, which indicates substantial overwarning. To reduce this overwarning,
the probability threshold of 40 % is taken. At this probability threshold, the CSI
value (49.4 %) shows a decrease of less then 0.5 %, while overwarning has been
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5.2 LOGISTIC REGRESSION

Figure 5.13: Attributes diagram for the validation dataset: step 3. The number in the
brackets represent the number of events found in the decile. N is the total number of
events.

reduced significantly (Bias=1.05). With respect to step 2, the POD has increased
to a value of 67.7 %, while the FAR did not change (35.4 %). Comparing the
probability histograms of both steps shows that more yes-events have moved
to the right side, explaining the increase of the POD. Combined with the results
from the CCM, the Cb/TCu cloud detection method leads to a final POD of 65.2
% for the yes events and a FAR of 35.4 %.

The case study of 7 August 2004 at 10.56 UTC has a predicted probability of
51% when using this logistic regression model. Using a probability threshold
of 0.4, the Cb/TCu cloud detection method has identified the pixels in the CCM
as Cb/TCU clouds.
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Figure 5.14: Verification scores for the validation dataset: step 3. The upper panel shows
several verification scores as a function of probability threshold (5 % to 95 % in steps
of 5 %). The lower left panel shows FAR as a function of CSI for several probability
thresholds. The lower right panel shows Bias as a function of CSI for several probability
thresholds. For the two lower panels, the probability threshold increases from upper to
lower points.
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5.3 SUMMARY

In Fig. 5.15 values of CSI and Bias are shown as functions of POD and FAR. For
the three steps, the four verification scores are shown for six probability thre-
sholds between 25 % and 50 % (increasing probability threshold from upper
right crosses to lower left crosses). Best verification scores are located in the
upper left corner of the figure near the bias=1 line. The improvement of step 3
over step 1 and 2 can be clearly seen by a shift of the scores towards higher CSI
values. The red cross in the figure shows the scores of the present radar-based
automated Cb/TCu cloud detection method at the KNMI. However, only one
year (2005) of METAR data has been used for verfication. Therefore, the veri-
fication scores of the radar-based KNMI detection method might be somewhat
different when using other or more METAR data. The green cross indicates the
scores that are preferred at the KNMI for a responsible replacement of human
observers by an automated detection method at airport weather stations. It can
be seen that the verification scores of the new Cb/TCu cloud detection method
lie much more to the left and a little above the scores of the present Cb/TCu
cloud detection method, showing improvement due to decreasing FAR and
increasing POD.

Figure 5.15: CSI (bent contour lines) and bias (straight contour lines) as functions of
POD and FAR. The four verification scores for the three steps for six probability thre-
sholds between 0.25 (upper right crosses) and 0.5 (lower left crosses) are shown. Red
cross: scores of the present KNMI automated Cb/TCu detection method. Green cross:
required scores.
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5. RESULTS

A flow chart of the results of the Cb/TCu cloud detection method for the va-
lidation dataset is presented in Fig. 5.16. The research started with 364 avaible
yes-events (1) and 2888 non-events (0) for the validation dataset. After the
convective cloud mask, 349 (95.9%) yes-events remained and 1022 (35.4%) of
the non-events. Combined with the logistic regression model with only MSG-
SEVIRI derived cloud physical properties on low spatial resolution results into
a POD of 60.7% and FAR of 39.6%. The logistic regression model with the HRV-
COT on high spatial resolution reduces the FAR to 35.8 %, while the POD of
60.4 % is nearly the same. The final logistic regression model, which also in-
cludes radar data, leads to an increase in the POD, which now is 65.2 %, and a
FAR of 35.4%.

Figure 5.16: Flow chart of the investigated Cb/TCu cloud detection method for the
validation dataset.
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6th Chapter
DISCUSSION AND

CONCLUSION

An automated Cb/TCu cloud detection method has been developed for the
coastal area of the Netherlands, centered around Schiphol airport and for day-
time summer period, using MSG-SEVIRI derived cloud physical properties,
HRV reflectance and weather radar data. The method has been constructed
in two steps: the convective cloud mask to construct a hazard map and a lo-
gistic regression model to determine the level of risk. This approach is novel
with respect to earlier studies in the sense that satellite derived cloud physical
properties are directly related, physically and statistically, to the presence of
convective clouds in a satellite image. The convective clouds need not to be
precipitating clouds.

The convective cloud mask is designed using a thresholding technique for the
cloud physical properties and HRV reflectance. Hereby, optically thin and low
reflecting clouds with too warm cloud tops and no presence of ice crystals or
too small effective radii within the cloud top are filtered out. The mask works
well as a first filter since two third of the non-events are removed while over 95
% of the yes-events remain. The hazard map, created by the potential convec-
tive cloud pixels, indicates the areas of possible risk. This is the only available
information about the location and dimensions of the possible Cb/TCu clouds
within the MSG box area. This information is not included in the METAR data-
set and can therefore not be verified. In many convective cloud studies, radar
data is used to verify satellite detection methods. However, a lack of perfor-
mance of the KNMI automated Cb/TCU detection method based on radar data
has been the motive of this research. Therefore, radar data can not be used for
verification, but may serve as an indication of performance, e.g. due to visual
inspection. Doing so, one has to keep in mind the parallax effect.

From the cloud physical properties and HRV reflectance of the pixels in the
hazard map, a number of potential predictors has been derived. It is assumed
that a physical relationship exists between these predictors and the predictand
(Cb/TCu clouds) and therefore logistic regression is used to determine the le-
vel of risk for the hazard map. It is very likely that several subsets of predictors
have near equal performance due to correlations among the predictors. The-
refore, forward stepwise selection method is used to reveal a well-performing
and independent set of predictors. The frequent selection of the HRV reflec-
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tance predictor over the predictors derived from the cloud physical properties
indicates the importance of satellite data on high spatial resolution. This has
been confirmed by the frequent selection of the HRV derived COT on high
resolution. Adding radar data as a predictor showed an increase in model per-
formance with respect to the first two models. The Hosmer-Lemeshow test
and area under the ROC curve show adequate data fit for the final model and
excellent discriminative power. Furthermore, the difference in model perfor-
mance between the training and validation dataset is very small, indicating
that no over-fitting occurred. A few predictors have been given new para-
meterisations or have been categorized to increase the statistical relationship
between the predictors and the predictand. The Brier skill score is clearly posi-
tive, due to both good reliability and good resolution. This can also be seen in
the attributes diagram. This shows positive skill of the predicted probabilities
with respect to sample climatology. The optimal probability threshold, with
large CSI and bias close to 1, are located between 25 % and 40 % due to a large
number of non-events (> 75%) that have low probabilities (0-20 %) and the
spread of yes-events over all probability deciles.

The use of data from numerical weather prediction models (convective indices
such as CAPE), lidar, data from soundings, and ww codes to define a pre-
dictand has been rejected. The METAR dataset is considered to give the best
information about the presence of Cb/TCu clouds at and within the vicinity of
Schiphol airport and is therefore chosen as ’ground truth’. However, despite
the fact that reports are made by professional meteorological observers, uncer-
tainties remain. The reports are made by at least ten different human observers
and are mainly based on visual inspection. Therefore, reports are subject to
the opinion of the present observer. Opinions may differ on the maximum dis-
tance of convective clouds at which a report should be made. Also the timing
of the reports may differ since no exact rules exist on the time of transition of a
cumulus cloud into a towering cumulus and a towering cumulus into a cumu-
lonimbus cloud. Furthermore, errors may arise from the matching of the MSG
time steps to the METAR time steps and the requirement of at least 10 pixels
in the hazard map. Small convective clouds may not pass the convective cloud
mask. The skill of the model may also be influenced by the MSG box area size,
which is likely to be larger than the viewing/reporting range of the observer,
and the parallax effect. These might lead to weaker statistical relationships
between the predictors and the predictand.

The obtained thresholds in the convective cloud mask and the set of predic-
tors and their regression coefficients in the logistic regression model may differ
for different regions, time-of-day and time-of-year. For example, the aerosol
distribution around Schiphol may be different compared to the aerosol distri-
bution in other parts of the country due to presence of sea particles or even
particles from contamination produced by air planes. This has a direct and in-
direct effect on the effective radius, optical thickness and reflectance. For night
time detection, the HRV reflectance can not be used in the set of predictors.
Furthermore, relationships between the predictors and the predictand may be
different in winter time.

From the verification results obtained in this study it can be concluded that a
good first step of improvement has been made. The POD of 65.2 % shows an
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increase with respect to the POD of 58 % for the KNMI Cb/TCu cloud detec-
tion method. The FAR of 35.4 % has been decreased by a half with respect to a
FAR of 70%, which is a substantial reduction. However, for a responsible repla-
cement of human observers by an automated Cb/TCu cloud detection method
at airports, a POD of at least 80% and a maximum FAR of 20% is required.

Several things can be done to improve the Cb/TCu cloud detection method in
future studies. For a more effective use of the spatial variability that convective
clouds exhibit in satellite images, the MSG-SEVIRI cloud physical properties
should be retrieved on the high spatial resolution. At presence, the retrieval
of high resolution cloud physical properties is not possible. Also, new pre-
dictors can be derived from trends in time of cloud physical properties (e.g.
decrease in cloud top temperature, which indicates vertical growth), using a
cloud-tracking algorithm. Furthermore, useful predictors (e.g. CAPE) might
be derived from data from numerical weather prediction models and soun-
dings. Persistence, whereby present detection is related to previous observa-
tions, might also be very useful to take into account in future model develop-
ment. Finally, the effect of the choice of the MSG box area size on the model
performance can be investigated.
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A LIST OF ACRONYMS
AND ABBREVIATIONS

ACC ACCuracy
AVHRR Advanced Very High Resolution Radiometer
BS Brier Score
BSS Brier Skill Score
BT Brightness Temperature
BTD Brightness Temperature Difference
CAPE Convective Available Potential Energy
Cb Cumulonimbus
CCN Cloud Condensation Nuclei
CIN Convective INhibition
COT Cloud Optical Thickness
CPH Cloud (thermodynamic) PHase
CPP Cloud Physical Properties
CSI Critical Succes Index
CTT Cloud Top Temperature
DAK Doubling Adding KNMI
ESA European Space Agency
EUMETSAT EUropean METeorological SATtellite organisation
FAR False Alarm Rate
GOES Geostationary Operational Environment Satellite
HRV High Resolution Visible
IR InfraRed
KNMI Koninklijk Nederlands Meteorologisch Instituut
LCL Lifting Condensation Level
LFC Level of Free Condensation
LUT Look Up Table
LWC Liquid Water Content
LWP Liquid Water Path
(AUTO) METAR (AUTO) METeorological Aerodrome Reports
MODIS MODerate resolution Imaging Spectroradiometer
MSG Meteosat Second Generation
NASA National Aeronautics and Space Administration
NIR Near-InfraRed
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A. LIST OF ACRONYMS AND ABBREVIATIONS

NOAA National Oceanic and Atmospheric Administration
POD Probability Of Detection
REFF EFFective Radius
ROC Receiver Operating Characteristic
RTM Radiative Transfer Model
SAF (CM) Satellite Application Facility (Climate Monitoring)
SEVIRI Spinning Enhanced Visible and InfraRed Imager
TCu Towering Cumulus
UTC Coordinated Universal Time
VIS VISible
WV Water Vapour
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