Index
1 Introduction 5
2 Rationale and Background 7
3 Theoretical Framework 9
4 Concepts and Methods 13
4.1 Observation Instrument 13
4.2 Questionnaire 14
4.3 Training of Inspectors 15
4.4 Sample 15
5 Reliability 17
6 Validity 19
7 Results 23
7.1 Opportunity to Learn 25
7.2 Teaching 26
7.3 Monitoring Students' Progress 26
7.4 Measures Taken for Struggling Learners 27
7.5 Learning 27
7.6 Context 27
8 Discussion 31
References 35
AppendixI Lesson Observation and Interview Form for Evaluating theQuality of Learning and Teaching39
II International Project Team 44

1
 Introduction

The inspectorates of education from several countries in Europe have assessed, each in their own country, the quality of teaching and learning, using a shared framework of indicators and centrally trained inspectors. These inspectors have visited large national representative samples of primary schools. Within these schools they have observed one or two mathematics/arithmetic lessons in the grade with the largest proportion of 9-year-olds, which is the fourth grade in most countries. In this report, an international comparative analysis is made of the quality of teaching and learning in the mathematics/arithmetic lessons in these countries.

2 Rationale and Background

From 2002 onwards, initiatives and first steps for the project 'International Comparative Analysis of Learning and Teaching' (ICALT) were taken by the inspectorates of education in England, Flanders (Belgium), Lower Saxony (Germany), North Rhine-Westphalia (Germany) and the Netherlands. The Dutch Ministry of Education funded this project in 2002 and 2003. During these years, the inspectorates of education from these countries jointly developed an instrument to observe and analyse the quality of learning and teaching in primary schools in their countries. The results of the first stage of this project are reported in Van de Grift (2007). During the second stage of the project, some items were added to existing observation scales and a new observation scale about 'reflexivity and discursiveness' was constructed. Furthermore, a few interview items were added on 'opportunity to learn', 'monitoring of student progress' and a Likert scale was constructed for assessing 'special measures for struggling learners'. The aim of the second stage of the study was to deliver international benchmarks for the quality of several aspects of teaching and learning that can be used in the work of the national inspectorates and national educational policy agencies. Five European countries have decided to adopt this project and implement the final version of the developed instrument: Flanders (Belgium), Lower Saxony (Germany), the Slovak Republic, Scotland and the Netherlands.

3 Theoretical Framework

Both the Organisation for Economic Co-operation and Development (OECD) and the International Association for the Evaluation of Educational Achievement (IEA) regularly publish comparative studies on educational outcomes.
The recent OECD study from the Programme for International Student Assessment (PISA) showed remarkable differences in the mathematics competences between the average scores of the 15 -year-old students in the countries participating in the ICALT project (OECD, 2007). The difference between the highest average score of the Dutch students and the lowest average score of the Slovakian students is 39 points, which is more than one third of a standard deviation.

Table 1. Mathematics scores in international comparative studies

	Mathematics scores 15-year-old students in 2006 (PISA, OECD, 2007)	Mathematics scores 10-year-old students in 2007 (TIMSS, Mullis, Martin \& Foy, 2008)
England		
Flanders (Belgium)	520	541
Germany	504	
Netherlands	531	525
Scotland		535
Slovak Republic	492	494
United Kingdom	495	496

A recent IEA study from the Trends in International Mathematics and Science Study (TIMSS) programme shows a slightly different picture for the mathematics competences between the average scores of the 10 -year-old students in the counties participating in the ICALT project (Mullis, Martin \& Foy, 2008). Not every country participates with every age group in the PISA and TIMSS studies. In the TIMSS study in 2007, the Flemish students did not participate and the students of the United Kingdom in this study are divided into English and Scottish students. The difference between the highest scores of the average English student and the average score of the Scottish students is 47 points, which is almost half a standard deviation.

These differences in average scores between countries require explanations. Every year, several publications on comparative studies in education are published. The Organisation for Economic Co-operation and Development (OECD) for instance, releases 'Education at a Glance' annually and the European Commission publishes its 'Key Data on Education in Europe' every two years. These publications inform us about the international differences in quantitative facts like teacher salaries, contact hours, class sizes and so on, but there are no publications that offer reliable and valid information on international differences in the quality of teaching and learning strategies. This information is vital for international benchmarking on these important aspects of education and it is important for setting criteria for school (self-) evaluation as well.

Since 1961, a lot of observation studies have been carried out into the quality of teaching (Flanders, 1970; Stallings \& Kaskowitz, 1974; Stallings, Needels \&

Stayrook, 1979; Capie, Johnson, Anderson, Ellett \& Okey, 1980; Florida Coalition for the Development of a Performance Measurement System, 1983; Veenman, 1986; Stringfield, Teddlie \& Suarez, 1985; Virgilio, 1987; Virgilio \& Teddlie, 1989; Teddlie, Virgilio \& Oescher, 1990; Evertson, 1987; Evertson \& Burry, 1989; Slavin, 1987; Van de Grift \& Lam, 1998; Dutch Inspectorate of Education, 1998; HM Inspectorate of Education, 1999; 2001; Ofsted, 1995; Van de Grift 2007). However, most of these studies are small-scale national studies and the results are not adequate for the development of international benchmarks. Results and instruments of these observation studies were used for the development of indicators for the observation instrument which, in a further developed form, has been used in this project.

4 Concepts and Methods

One of the long-term aims of this study is to make preparations for new, combined studies like the PISA and TIMSS studies into the achievements of students and observational studies into the quality of teaching and learning in the participating countries. The basic research question of the study is: to what extent do teaching and learning in the year with the largest proportion of 9 -year-olds at the beginning of the school year (the fourth grade in most countries) differ across four European countries? The idea of teaching and learning contains several core concepts: the opportunity students receive to learn the targets of the curriculum, the teaching practice, monitoring students' progress, the measures taken for struggling learners and the learning process of students. The concepts are operationalised in the instruments mentioned in Table 2.

Table 2. Instruments used

	Instrument	Number of items
Opportunity to learn		
Quality of the curriculum	Interview	3
Weekly minutes devoted to arithmetic	Interview	1
Percentage of students using textbooks and methods of 'younger grades'	Interview	1
Teaching		
Safe and stimulating learning climate	Observation	Observation
Clear and activating instruction	Observation	9
Efficient classroom management	Observation	4
Teaching learning strategies		9
Monitoring students' progress	Interview	
Times a year students' progress is monitored	Observation	1
Measures taken for struggling learners	Likert scale	4
Adaptation of teaching to diverse needs of students		3
Curative measures for struggling learners	Observation	
Learning	Observation	
Involvement of students		4
Reflexivity and discursiveness		

Some of these aspects are suitable for observation, others for an interview or questionnaire.

4.1 Observation Instrument

During the first stage of this study, an observation instrument was developed in several pilot studies. England, Belgium Flanders, Lower Saxony and the Netherlands were involved in these pilots. The observation instrument was piloted for reliability, inter-rater reliability and validity based on more than 850 observations in the four countries mentioned. This pilot project has shown that the countries can be compared in a reliable and valid way, based on aspects like:

- safe and stimulating learning climate;
- clear instruction;
- adaptation of teaching;
- teaching learning strategies;
- classroom management;
- involvement of students (cf. Van de Grift, 2007).

A slight revision of this instrument was carried out in 2007. Some items were added to existing scales. One new scale 'reflexivity and discursiveness' was added with the help of Kaune (2006) and Cohors-Fresenborg (Cohors-Fresenborg \& Kaune, 2007a). This includes three items concerning meta-cognitive activities (planning, monitoring and reflection) and one item concerning discursiveness (CohorsFresenborg \& Kaune, 2007b), which is an indicator of to what degree students' verbal contributions to the classroom dialogue fit exactly to the topic discussed or to arguments other students have previously introduced. All scales and items are found in the appendix.

4.2 Questionnaire

The observation instrument is elaborated with a few interview items on 'opportunity to learn the minimum objectives of the curriculum', 'the frequency of monitoring of students' progress' and 'special curative measures for struggling learners'. After the inspectors made their observations they asked the teachers some questions about these three topics:
Students receive ample opportunity to learn the minimum objectives of the curriculum when:

- their teacher uses regular and modern arithmetic methods that cover the minimum objectives of the grade;
- enough weekly hours are spent on arithmetic;
- no students are lagging behind for more than a year.

The frequency of monitoring students' progress is determined by simply asking the amount of times teachers use standardised tests to gauge the achievements of their students. The quality of the curative measures for struggling learners is measured by three Likert-type questions:

- Does the teacher diagnose the learning problems of students at risk?
- Does the teacher have prescribed learning plans for students at risk?
- Does the teacher implement prescribed learning plans for students at risk?

This Likert scale has to fulfil the usual criteria for reliability and validity. The questions about opportunity to learn and monitoring are just low-inferential questions on factual matters.

4.3 Training of Inspectors

Two-day training sessions were organised for the inspectors in each of the participating countries. Several different DVDs were used during the training sessions. Some DVDs used lessons scoring around a p-value of . 50 on the teaching and learning aspects of the instrument, other DVDs showed lessons scoring around .25 and .75. It is far easier to obtain high inter-observer agreement rates with highquality lessons (score $>.75$) or weak lessons (score $<.25$) than with lessons with a score around the average (.50). The .25- and . 75 DVDs were used during the training. The . 50 DVDs were used for pre-measurement and post-measurement purposes in the training sessions. Inspectors were trained until they reached a consensus criterion of at least .80 on the 'difficult to judge' . 50 DVDs.

4.4 Sample

In each country, a large representative sample was taken to ensure accurate crossnational comparisons. The representativeness of the samples is mostly guaranteed by several inspectorates, because the schools they visit are not selected according to special criteria. The schools visited were simply 'the next schools to visit', which is equivalent to a simple random sample. Other inspectorates (for instance in the Netherlands) have proportional strategies for the selection of schools to visit: schools in more challenging circumstances are visited more frequently than others. In order to solve this problem, the Netherlands Inspectorate of Education took a simple random sample. To make sure that accurate comparisons can be made, sample sizes were based on a sample precision of .05 , which means that in several countries a national sample was drawn of about 300 observations. This succeeded in Flanders, Lower Saxony, Slovakia and the Netherlands, so the accuracy of these samples is about 5\%. In Scotland, 94 lessons were observed. The accuracy of this Scottish sample is about 10%. The observations were made during one whole school year.

5 Reliability

The internal consistency of each scale within and across the four countries is analysed by means of the calculation of the Cronbach alpha coefficient. The results are presented in Table 3.

Table 3. Internal consistency of the observation scales and the Likert scale

| Country/ cases | Flanders
 $\mathbf{N = 2 4 0}$ | Lower
 Saxony
 $\mathbf{N = 2 8 6}$ | Netherlands
 $\mathbf{N = 3 3 2}$ | Slovak
 Republic
 $\mathbf{N = 3 2 4}$ | Scotland
 $\mathbf{N = 9 4}$ | Total
 $\mathbf{N = 1 2 7 6}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Safe and stimulating
 learning climate | .87 | .89 | .88 | .88 | .84 | .88 |
| Clear and activating
 instruction | .84 | .88 | .79 | .89 | .88 | .87 |
| Efficient classroom
 management | .83 | .79 | .83 | .87 | .85 | .84 |
| Adaptation of
 teaching to diverse
 needs of students | .86 | .66 | .78 | .90 | .83 | .81 |
| Teaching learning
 strategies | .89 | .91 | .70 | .93 | .92 | .91 |
| Involvement of
 students | .90 | .82 | .83 | .87 | .85 | .86 |
| Reflexivity and
 discursiveness | .89 | .87 | .81 | .86 | .86 | .88 |
| Curative measures for
 struggling learners | .78 | .84 | .71 | -11 | .68 | .84 |

1) The Slovak inspectorate did not participate in this part of the study.

Most scales of the instrument were sufficiently homogeneous (Cronbach's alpha $>.70$) for our purpose in each of the countries involved. There are two small exceptions: the scale 'adaptations of teaching to diverse needs of students' has a Cronbach's alpha of .66 in Lower Saxony and the scale 'curative measures for struggling learners' has a Cronbach's alpha of . 68 in Scotland.

Inter-rater reliability was calculated in an earlier study (Van de Grift, 2007). In that study, pairs of inspectors observed the same teachers during training sessions. The inter-rater reliability coefficients varied between .73 and .93 for the subscales, which is sufficiently high. For the second stage of this study, the observing inspectors were trained until they reached a consensus criterion of at least .80 .

6 Validity

The construct validity of the observation instrument was analysed in several ways. The first procedure consisted in computing correlations between the aspects of teaching of the ICALT instrument and a global judgement on the quality of 'overall teaching'. The results are presented in Table 4.
'Quality of the mathematics curriculum', 'Weekly minutes devoted to mathematics' and 'Times a year students' progress is monitored' are in most countries normally based on decisions at school level and not at teacher level.
In Scotland however, teachers use their professional judgement to decide when a student is ready to sit a national assessment. Although this may occur once a year, Scottish teachers will also carry out other forms of assessment during the year. A relationship is thus not to be expected and correlations between these variables and 'Overall teaching' as observed in the mathematics lessons, are not expected to differ significantly from 0 , as they are.
A low negative but significant correlation is found between 'Overall teaching' and the 'Percentage of students lagging behind'.
The teaching scales 'Safe and stimulating learning climate', 'Clear and activating instruction', 'Efficient classroom management and 'Teaching learning strategies' are highly correlated with 'Overall teaching' as expected, which are important indications for construct validity.
'Measures taken for struggling learners' is expected to correlate moderately but significantly with 'Overall teaching', which was also found.

Table 4. Construct validity of the teaching scales

	Overall teaching
Opportunity to learn	
Quality of the curriculum	-.06
Weekly minutes devoted to arithmetic	.09
Percentage of students using textbooks and methods of 'younger grades'	$-.10^{* *}$
Teaching	
Safe and stimulating learning climate	$.63^{* *}$
Clear and activating instruction	$.77^{* *}$
Efficient classroom management	$.70^{* *}$
Teaching learning strategies	$.74^{* *}$
Monitoring students' progress	.04
Times a year students' progress is monitored	$.58^{* *}$
Measures taken for struggling learners	$.28^{* *}$
Adaptation of teaching to diverse needs of students	
Curative measures for struggling learners	

* significant at .05 level; ** significant at .01 level

Next, we computed the correlations between the aspects of learning of the ICALT instrument and a global judgement on the quality of learning. The results are presented in Table 5.

	Overall learning
Learning	
Involvement of students	$.72^{* *}$
Reflexivity and discursiveness	$.52^{* *}$

* significant at .05 level; ** significant at .01 level

These correlations vary between . 52 and .72 for the different parts of learning, which could be expected. This is an indication of good construct validity.

For the predictive validity, correlations were computed between the behaviour of teachers and the behaviour of students. We should expect that better teaching goes along with more involvement of students and more reflexivity and discursiveness.
'Opportunity to learn' as measured by the ICALT-instrument is mostly determined by school-level decisions ('Quality of the mathematics curriculum' and 'Weekly minutes devoted to mathematics') or variables highly influenced by contextual factors ('Percentage of students lagging behind'). That is why we expected only low or insignificant correlations with students' behaviour in classrooms ('Involvement of students' and 'Reflexivity and discursiveness'). This is in agreement with the findings in Table 6.

Table 6. Predictive validity of the teaching scales

	Involvement of students	Reflexivity and discursiveness
Opportunity to learn		
Quality of the curriculum	-. 08	-. 05
Weekly minutes devoted to arithmetic	. 07	. 01
Percentage of students using textbooks and methods of 'younger grades'	.16*	.08*
Teaching		
Safe and stimulating learning climate	.59**	. 43 **
Clear and activating instruction	.72**	.59**
Efficient classroom management	.63**	. $42 * *$
Teaching learning strategies	. $66^{* *}$. $67 * *$
Monitoring students' progress		
Times a year students' progress is monitored	. 03	.25**
Measures taken for struggling learners		
Adaptation of teaching to diverse needs of students	. 51 **	.48**
Curative measures for struggling learners	. $34 * *$. $31 * *$

The teaching scales 'Safe and stimulating learning climate', 'Clear and activating instruction', 'Efficient classroom management and 'Teaching learning strategies' are highly correlated with student behaviour ('Involvement of students' and 'Reflexivity and discursiveness'), as expected. The better the teaching, the better the involvement of students and the better the reflexivity and discursiveness of the
students. These correlations varied between .42 and .72 for the different parts of teaching. This legitimates the decision to implement the construct 'reflexivity and discursiveness' in our study with a new scale.
'Monitoring students' progress' is not correlated with 'Involvement of students' as expected and is significantly correlated with 'Reflexivity and discursiveness', which was unexpected.
The same tendency is found for the measures taken for struggling learners and student behaviour. The more teachers adapt the teaching to the diverse needs of students and the better the curative measures for struggling learners, the better the involvement and the reflexivity and discursiveness of students. These correlations varied between .31 and .51 for the different parts of teaching.
We might observe that measurements based on school-level decisions ('Quality of the mathematics curriculum' and 'Weekly minutes devoted to mathematics') are not correlated with students' behaviour in classrooms.
'Times a year students' progress is monitored' is correlated with students' behaviour to a moderate degree.
These construct and predictive validity coefficients encourage the idea that the observation scales of the ICALT instrument measure what is intended to be measured.

7 Results

Some variables are measured in their own specific way: minutes, percentages, times and numbers. All scores on observationinstruments and Likertscales were standardised by dividing the sum score by the product of the number of response categories and the number of items. Each scale thus varies between 0 and 1. An average score in table 6 lower than .25 means that the average teacher scores 'predominantly weak', a score between .25 and .50 means that the average teacher has 'more weaknesses than strengths', a score between .50 and .75 means that the average teacher has 'more strengths than weaknesses' and a score above .75 means that the average teacher scores 'predominantly strong'. These average scores are found in Table 6.

In this study, we deviate from the usual procedure used to ascertain whether differences found are significant or not. The main reason for this is that the significance of a difference says nothing about the practical relevance of a difference between countries (cf. Carver, 1978). We prefer to use 'effect sizes'. Effect sizes do tell us something about the relevance of an effect, without being conditional upon the size of a random sample. Furthermore, effect sizes are standardised, which enables us to compare the impacts of the different indicators. In this study effect sizes are be computed by dividing the difference of a national average from the international average by the standard deviation. Effect sizes of . 80 and more are considered large by Cohen (1988), effect sizes of .50 are moderate and effect sizes of .20 are small. Cohen's standardisation of effect sizes should be seen against the background of the fact that, in many educational experiments, effect sizes larger than .40 are seldom found. Effect sizes that are smaller than .15 will not be interpreted in this text. Effect sizes of . 20 and more are considered relevant in educational terms. The national deviations from the international average, measured in effect sizes are found in Table 6a. Small effect sizes (between 20 and .50) are presented in italics. Moderate and large effect sizes (. 50 and more) are presented in bold figures.

Table 6. Raw results

| | Average | St. dev. | Flanders | Lower
 Saxony | Nether-
 lands | Scot-
 land |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Slovak
 Republic | | | | | | |
| Opportunity to learn | | | | | | |

1) In the Slovak Republic, this year no standardised national tests were used, though they are being developed. However schools and teachers do check the students on a regular basis
2) This is not measured in the Slovak Republic but struggling learners receive individually targeted assistance from the teacher.
3) These data are not available for the Slovak Republic.

	Flanders	Lower Saxony	Netherlands	Scotland	Slovak Republic
Opportunity to learn					
Quality of the curriculum	-. 10	. 00	. 10	-. 30	20
Weekly minutes devoted to arithmetic	. 94	-. 67	-. 69	. 64	-. 90
Percentage of students using textbooks and methods of 'younger grades'	-. 08	-. 27	-. 02	1.02	-. 23
Teaching					
Safe and stimulating learning climate	. 15	-. 23	-. 08	. 69	-. 15
Clear and activating instruction	-. 08	-. 25	-. 17	. 92	. 08
Efficient classroom management	. 29	-. 21	. 07	. 79	-. 21
Teaching learning strategies	-. 13	-. 56	. 19	. 56	. 25
Monitoring students' progress					
Times a year students' progress is monitored	. 63	-1.05	. 34	-. 85	$1)$
Measures taken for struggling learners					
Adaptation of teaching to diverse needs of students	.-. 22	-. 39	. 28	. 72	. 06
Curative measures for struggling learners	. 00	-. 80	. 54	. 59	${ }^{2)}$
Learning					
Involvement of students	.-. 13	-. 13	. 07	. 53	. 00
Reflexivity and discursiveness	.. 06	-. 69	. 25	-. 13	. 56
Context					
Percentage of schools in urban regions	. 22	. 03	-. 32	. 52	3)
Percentage of students from socially deprived families	. 28	-. 03	-. 24	. 03	3)
Percentage of students for which the language of instruction is not their native language	. 09	. 18	-. 15	-. 46	${ }^{3)}$
Number of students at school	-. 11	. 08	. 06	-. 14	-. 22
Number of children in classroom	-. 27	-. 10	. 24	. 22	. 33
Percentage of combined classes	-. 38	. 09	. 11	. 29	. 61
Percentage of beginning teachers	-. 02	-. 28	. 14	. 37	${ }^{3)}$
Percentage of male teachers	. 03	. 03	. 11	-. 45	. 02

1) In the Slovak Republic, this year no standardised national tests were used, though they are being developed. However schools and teachers do check the students on a regular basis.
2) This is not measured in the Slovak Republic but struggling learners receive individually targeted assistance from the teacher.
3) These data are not available for the Slovak Republic.

7.1 Opportunity to Iearn

Opportunity to learn has different aspects: the quality of the curriculum (i.e., the textbooks and methods), the amount of time offered to reach the targets of the curriculum, and last but not least, the amount of students that lag behind so far that they do not even have a chance to reach the minimum targets. The quality of the curriculum is measured by simple questions like: are the textbooks and methods regular and modern textbooks and do they cover the minimum targets for arithmetic? Almost all schools in Flanders, Lower Saxony, the Netherlands, the Slovak Republic and Scotland use regular and modern textbooks that cover the minimum targets for arithmetic. Differences between countries seem to be very small, with Scotland on the lowest side of the dimension and Slovak Republic on the highest side.
The time devoted to arithmetic is quiet different in the countries researched. In Flanders, the Netherlands and Scotland, about 5 hours are devoted to arithmetic weekly. In Lower Saxony and the Slovak Republic the weekly time for arithmetic is less than 4 hours weekly.
On average 2 to 3% of the students lag behind for more than a year. The same average is found in Flanders and the Netherlands. In Lower Saxony and the Slovak Republic, the percentage of students requiring support is a bit lower (1.11\% and 1.38%, respectively) but is much higher in Scotland (9.25\%). Students requiring support may for instance use texts designed for younger students during a short period of time in order to revise a specific aspect of the curriculum. Later on they may move back to their normal textbook and will be able to reach mimimum targets. In Scotland children are taught in mixed ability classes in primary school so there may be students with additional support needs in many classes. In some cases the observation may have taken place in a class where the children work in ability groups for maths. If the observation took place in a lower ability group then this may have skewed the data.

7.2 Teaching

The quality of the learning climate does not seem to differ very much between Flanders, Lower Saxony, Slovak Republic and Netherlands. These countries all score within a narrow range around the international average of .80, with Lower Saxony on the low side. The average score of the Scottish teachers is much higher though. The Scottish teachers differ from the national average with a effect size of .69. The quality of instruction does not differ very much between Flanders, Slovak Republic and Netherlands either. These countries score around .74. In Lower Saxony the quality of instruction is slightly lower (effect size -.25) and in Scotland much higher (effect size .92).
Teachers in the Netherlands score for classroom management around the international average (.78). Teachers in Lower Saxony and Slovak Republic score slightly lower than the international average (effect size -.21) and Flemish teachers slightly better (effect size . 29) than the international average. Scottish teachers score much better on classroom management on than the international average (effect size .79).
Teachers in the Netherlands and Flanders score on teaching learning strategies around the international avertage (.64). Teachers in Slovak Republic score slightly higher (effect size .25) and in Scotland the scores are clearly higher than the
international average on teaching learning strategies (effect size .56). Teachers in Lower Saxony on the other hand score clearly lower than the international average on learning strategies (effect size -.56).

7.3 Monitoring students' progress

Monitoring students' progress is researched by a simple question about the frequency of use of standardised tests. Flemish teachers monitor students' progress more than twice a year. Dutch teachers twice a year and teachers in Lower Saxony and Scotland monitor students' progress less than once a year. As mentioned, in Scotland there is continuous assessment of various types but national assessments are used once a year.

7.4 Measures taken for struggling learners

Slovak teachers score around the international average for adaptation of teaching to the diverse needs of students. Dutch teachers score slightly better (effect size .28) and teachers in Scotland score much better (effect size.72), while teachers in Flanders and Lower Saxony score slightly lower than the international average (effect sizes -. 22 and -.39, respectively).
Curative measures taken for struggling learners is at the international level in Flanders, but much more on the low side in Lower Saxony (effect size -.80) and more on the high side in the Netherlands (effect size .54) and in Scotland (effect size .59).

7.5 Learning

Involvement of students is about equal in Flanders, Lower Saxony, the Slovak Republic and the Netherlands. Teachers in these countries score around the international average of . 76 on involvement of students. In Scotland, involvement of students is better (effect size .53).
Reflexivity and discursiveness is around the international average in Flanders and Scotland. In Lower Saxony the quality of reflexivity and discursiveness is lower (effect size -.69) and in the Slovak Republic and the Netherlands much higher (effect size . 56 and .25).

7.6 Context

The countries differ in the amount of schools found in urban regions. The international average in our samples is about 40\%. The same percentage is found in the sample of Lower Saxony. In the Dutch sample, only 24% of the schools are found in urban regions, in the Flanders' sample 51\% and in the Scottish sample 65\%.
There was not so much difference found in the percentage of students from socially deprived families. The international average in the samples is about 16 per cent.

About the same percentages are found in Lower Saxony and Scotland. In the Netherlands, this is lower (12%). It is higher in Flanders (21%).
The countries differ more in the amount of students for which the language of instruction is not their native language. In Scotland this is less than 2 per cent, in the Netherlands 9\%, Flanders 14\% and in Lower Saxony about 30\%.
Average school size and average classroom size does not seem to differ very much in the four counties. School size and classroom size are in all countries on average about 218 and 20 students, respectively.
In Lower Saxony the percentage of beginning teachers is two. In Flanders, the Netherlands and Scotland this is 10,15 and 22%, respectively.
The percentage of male teachers is about 20 in Flanders, Lower Saxony, the Slovak Republic and the Netherlands and 1 per cent in Scotland.

Differences in contextual variables might influence results on teaching and learning. We therefore computed the averages scores on the scales measuring the quality of learning and teaching after correction for these contextual variables. Table 7 shows the results on opportunity to learn, teaching, monitoring students' progress, measures taken for struggling learners and learning, after correction for the contextual variables.
A quick comparison between Tables 6 and 7 makes clear that the differences between raw scores (Table 6) and context corrected scores (Table 7) are negligible.

Table 7. Results corrected for context

	Flanders	Lower Saxony	Netherlands	Scotland	Slovak Republic ${ }^{1)}$
Opportunity to learn					
Quality of the curriculum	. 98	. 99	. 98	. 95	1.00
Weekly minutes devoted to arithmetic	304.89	234.91	294.50	292.89	225.26
Percentage of students using textbooks and methods of 'younger grades'	1.80	1.21	2.95	11.31	. 08
Teaching					
Safe and stimulating learning climate	. 83	. 77	. 79	86	. 78
Clear and activating instruction	. 73	. 71	. 72	. 84	. 75
Efficient classroom management	. 82	. 74	. 78	. 87	. 75
Teaching learning strategies	. 62	. 56	. 66	. 70	. 68
Monitoring students' progress					
Times a year students' progress is monitored	2.23	. 70	2.07	. 83	-
Measures taken for struggling learners					
Adaptation of teaching to diverse needs of students	. 60	. 58	. 70	. 79	. 64
Curative measures for struggling learners	. 67	. 26	. 85	. 88	-
Learning					
Involvement of students	. 74	. 72	. 77	. 84	. 76
Reflexivity and discursiveness	. 57	. 47	. 62	. 53	. 67

1) The data for the Slovak Republic are only corrected for available variables: school size, class size and percentage of male teachers.

8 Discussion

The average score of the teachers in Flanders is very often located around the international average. There is one exception; Flemish teachers monitor the progress of their students more than twice (2.3) a year. This is more often than the international average (1.7).

The teachers in the Lower Saxony devote less than 4 hours weekly to arithmetic while their colleagues in most other European countries devote about 5 hours a week to arithmetic. Teachers in Lower Saxony score more often below the international average on: 'teaching learning strategies', 'monitoring students' progress', and 'curative measures for struggling learners' and the students in Lower Saxony score more often below the international average on 'reflexivity and discursiveness'. The weaker evaluation of some criteria in Lower Saxony is in accordance with the judgements of the regular inspections in Lower Saxony. The development of general process competencies like learning strategies, has been established with a major commitment in Germany by the implementation of national curriculum standards, starting in 2004; it is not yet sufficiently found in the practice of schools. Matching teaching strategies and students' abilities or learning problems in an individualised curriculum, which is planned systematically and over the longer term and supported by special materials for individual students, is little practised. This is clearly demonstrated in Table 7. This experience already becomes evident during the training of the inspectors. On the question on the observation form 'How many students use textbooks and methods of 'younger' grades, relatively few observations were expected for schools in Lower Saxony. Students with large learning problems frequently transfer to a lower class to repeat the curriculum or to schools for students with special needs. Concerning the concepts of metacognition and discursiveness, we assume that the lower value is caused by a more precise view, due to more intensive training on the concepts, which had already been accomplished by the developers of the concept, Professors Kaune and Cohors Fresenborg, in Lower Saxony. Standardised tests are rarely used on the initiative of individual schools and instructors in Germany, which is shown by the IGLU and PISA results. From grade 1 to 4 in Lower Saxony, only once, in grade 3 is a written mathematics test taken in all schools.

Dutch teachers often score around the international average. There is one positive exception. Dutch teachers more often offer 'curative measures for struggling learners'.

Scottish teachers often score higher than their European colleagues. They more often have a 'safe and stimulating climate', a 'clear and activating instruction', a 'efficient classroom management', better 'teaching learning strategies', they adapt their teaching more often to the diverse needs of students and have more curative measures for struggling learners. The involvement of students is better than in the other participating countries. In Scotland however, more students are using the textbooks and methods of 'younger grades', and students' progress is monitored half as much (.83) as on average in Europe (1.69). Nevertheless we should be rather careful with the interpretation of the Scottish results. We have to keep in mind that the Scottish sample is much smaller than the samples in the other European
countries. Therefore, the precision of this Scottish sample is about 10%, while in the other European countries, the sample precision is about 5%. This means that another Scottish sample might deliver different results

The teachers in the Slovak Republic devote less than 4 hours weekly to arithmetic while their colleagues in the other European countries devote about 5 hours a week to arithmetic. The average scores of Slovak teachers are around the international average in all teaching aspects. The 'reflexivity and discursiveness' of Slovak students is better than the international average.

It is tempting to compare these figures about teaching and learning with the figures on student's achievements from PISA and TIMSS studies. We prefer not to make such premature analyses. It is more important to make preparations for combined studies into the achievements of students like the PISA and TIMSS studies and observational studies into the quality of the teaching and learning in the participating countries.

References

Capie, W., Johnson, C.E., Anderson, S.J., Ellett, C. and Okey, LR. (1980). Teacher performance assessment instruments. Athens, GA: University of Georgia.

Carver, R. P. (1978). The Case Against Statistical Significance Testing. Harvard Educational Review, 48 (3), 378-399.

Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates.

Cohors-Fresenborg, E. \& Kaune, C. (2007a). Modelling Classroom Discussions and Categorising Discursive and Meta-cognitive Activities. Proceedings of CERME 5, 1180-1189.

Cohors-Fresenborg, E. \& Kaune, C. (2007b). Kategoriensystem für metakognitive Aktivitäten beim schrittweise kontrollierten Argumentieren im Mathematikunterricht. Arbeitsbericht Nr. 44. Osnabrück: Forschungsinstitut für Mathematikdidaktik.

Evertson, C. (1987). Classroom observation record: observation record for project STAR. Nashville, TN: Vanderbilt University.

Evertson, C. \& Burry, J. (1989). Capturing classroom context: the observation instrument as lens for assessment. Journal of Personnel Evaluation in Education, 2, 297-320.

Flanders, N. (1970). Analyzing teaching behavior. Reading (Mass.): AddisonWesley.

Florida Coalition for the Development of a Performance Measurement System (1983). Domain: Knowledge base of the Florida performance measurement system. Tallahassee, FL: Office of teacher education, certification and in-service staff development.

HM Inspectorate of Education (1999). Quality in Secondary Schools: mathematics 1999. HM Inspectorate of Education: Edinburgh.

HM Inspectorate of Education (2001). Standards and Quality in Primary Schools: Mathematics 2001. HM Inspectorate of Education: Edinburgh.

Inspectorate of Education The Netherlands (1998). Integral school supervision 1999. Utrecht: Inspectorate of Education The Netherlands

Kaune, C. (2006). Reflection and Meta-cognition in Mathematics Education - Tools for the Improvement of Teaching Quality. Zentralblatt für Didaktik der Mathematik, 38 (4), 350-360.

Mullis, I.V.S., Martin, M.O., Gonzales, EJ. \& Chrostowski, SJ. (2004). TIMSS 2003 International Mathematics Report. Boston: TIMSS \& PIRLS International Study Center, Lynch School of Education, Boston College.

Mullis, I.V.S., Martin, M.O. \& Foy, P. (2008). TIMSS 2007 International Mathematics Report. Boston: TIMSS \& PIRLS International Study Center, Lynch School of Education, Boston College.

OECD (2006). PISA 2006 Science competencies for tomorrow's world. Volume 1 and 2. Paris: OECD.

Ofsted (1995). Guidance on the inspection of nursery \& primary schools. London: HMSO.

Slavin, R.E. (1987). Ability grouping and achievement in elementary schools. Review of Educational Research, 57, 293-336.

Stallings, J. \& Kaskowitz, D. (1974). Follow-through classroom observation evaluation (1972-1973). Menlo Park, CA: SRI International.

Stallings, J., Needels, M.\& Stayrook, N. (1979). How to change the process of teaching basic reading skills in secondary schools. Menlo Park, CA: SRI International.

Stringfield, S., Teddlie, C. \& Suarez, S. (1985). Classroom interaction in effective and ineffective schools: preliminary results from phase HI of the Louisiana

School Effectiveness Study. Journal of Classroom Interaction, 20, 31-37. Teddlie, C., I. Virgilio \& J. Oescher (1990). Development and validation of the Virgilio Teachers Behavior Instrument. Educational and Psychological Measurement 50,421-430.

Van de Grift, W. \& J.F. Lam (1998). Het didactisch handelen in het basisonderwijs. [Instruction in primary education.] Tijdschrift voor Onderwijsresearch 23(3), 224241.

Van de Grift, W. (2004). Quality of teaching in England, Belgium Flanders, Lower Saxony (Germany) and the Netherlands. Utrecht: The Netherlands Inspectorate of Education.

Van de Grift, W. (2007). Quality of teaching in four European countries: a review of the literature and application of an assessment instrument Educational Research, 49(2), 127-152.

Veenman, S., Lem, P., Voeten, B., Winkelmolen, B. \& H. Lassche (1986). Onderwijs in combinatieklassen. [Education in multi-graded classrooms.] 's- Gravenhage: SVO.

Virgilio, I. (1987). An examination of the relationships among school effectiveness in elementary and junior high schools. Doctoral dissertation, University of New Orleans.

Virgilio, I. \& Teddlie, C. (1989). Technical Manual for the Virgilio Teacher Behavior Inventory. Unpublished manuscript, University of Orleans.

Appendix I

Lesson Observation and Interview Form for Evaluating the Quality of Learning and Teaching

School		Teacher:	M / F
Age group:		Beginning teacher:	Y / N
Activity/subject matter: arithmetic	Mixed age group:	Y/N	
Name of inspector:	\# of students in classroom:	\ldots	
\% students from socially deprived families	$\ldots \%$	\# of students in school:	\ldots
\% students for which the language of instruction is not their native language	$\ldots \%$	\# of residents in community:	\ldots

Ask the teacher the following questions:			No=0 Yes=1
Opportunity to learn the minimum objectives	1	Are textbooks and methods for arithmetic frequently used by other schools?	01
	2	Do textbooks and methods for arithmetic cover the minimum objectives of the grade?	01
	3	Are the textbooks and methods for arithmetic obsolete or rarely used?	01
	4	How many weekly hours are spent on arithmetic?	How many students use textbooks and methods of 'younger' grades?
Monitoring	6	How many times a years are the achievements of students tested with standardised tests?	\ldots
Curative measures for struggling learners	7	Does the teacher diagnose the learning problems of students at risk?	\ldots
	8	Does the teacher have prescribed learning plans for students at risk?	01
	9	Does the teachers implement prescribed learning plans for students at risk?	01

Observe the following events:

Rate ${ }^{1}$ Please circle the correct answer: 1= predominantly weak; $2=$ more weaknesses than strengths
$3=$ more strengths than weaknesses; 4= predominantly strong
Observed ${ }^{2}$ Please circle (voluntary) the correct answer: $0=$ no, I didn't observe this; $1=y e s, I$ have observed this.

Indicator: The teacher ...			Rate ${ }^{1}$	Good practice examples: The teacher ...	Obser-
Safe and stimulating learning climate	10	...ensures a relaxed atmosphere	1234	...addresses the children in a positive manner	01
				...reacts with humour and stimulates humour	01
				...allows children to make mistakes	01
				...demonstrates warmth and empathy toward all students	01
	11	...shows respect for the students in behaviour and language use	1234	...allows students to finish speaking	01
				...listens to what students have to say	01
				...makes no role-confirming remarks	01
	12	...promotes the mutual respect and interest of students	1234	...encourages children to listen to each other	01
				...intervenes when children are being laughed at	01
				...takes (cultural) differences and idiosyncrasies into account	01
				...ensures solidarity between students	01
				...ensures that events are experienced as group events	01
	13	...supports the self-confidence of students	1234	...feeds back on questions and answers from students in a positive way	01
				...pays students compliments on their results	01
				...honours the contributions made by children	01

	14	...encourage students to do their utmost	1234	... praises students for efforts towards doing their utmost	01
			makes clear that all students are expected to do their utmost	01
				...expresses positive expectations to students about what they are able to take on	01
Clear and activating instruction	15	...clarifies the lesson objectives at the start of the lesson	1234	...informs students at the start of the lesson about the aims of the lesson	01
				...clarifies the aim of the assignment and what the students will learn from it	01
	16	...evaluates whether the objectives have been achieved at the end of the lesson	1234	...checks the students' achievements	01
				...verifies or evaluates whether the aims of the lesson have been achieved	01
	17	...gives clear instructions and explanations	1234	...activates the children's prior knowledge	01
				...explains in sequential stages	01
				...asks questions that are understood by the students	01
				...summarises the lesson materials from time to time	01
	18	..gives clear explanations of the learning materials and the assignments	1234	...ensures that every child knows what he has to do	01
				...explains how assignments are aligned to the aims of the lesson	01
				...clearly indicates the materials that can be used as learning aids	01
	19	...involves all students in the lesson	1234	...gives assignments that stimulate students into active involvement	01
				...gives turns to and/or involves those students who do not voluntarily participate in classroom activities	01
				...ensures that students listen carefully and keep on working	01
				...waits sufficiently long to allow children to reflect after posing a question	01
				..gives the opportunity to respond to students who don't put their hands up	01
	20	...makes use of teaching methods that activate the students	1234	...makes use of conversational forms and discussion forms	01
				...provides graduated exercises	01
				...permits working in corners/groups	01
				...makes use of ICT	01
				...uses a variety of instruction strategies	01
				...varies assignments	01
				...varies lesson materials to be used	01
				...uses material and examples from the students' daily life	01
				...asks lots of questions	01
	21	...poses questions which encourage thinking	1234	...uses pauses long enough to let all students think following questions	01
				...encourages students to ask one another questions	01
				...asks students to explain their understanding of topics to each other	01
				...regularly checks for understanding	01
				...poses questions that elicit feedback	01
	22	...checks whether students understand the lesson content	1234	...poses questions that initiate reflection	01
				...regularly checks for understanding	01
	23	...gives feedback on answers of students	1234	...makes explicitly clear whether an answer is correct or not	01
				...makes explicitly clear why an answer is correct or not	01
				...gives feedback on the way students arrive at their answers	01

	24	...checks whether students are completing the assignments correctly	1234	...checks whether students have understood what they have to do	01
				...gives feedback on the social functioning involved in the completion of tasks	01
Classroom management	25	...gives a well structured lesson	1234	...ensures clearly recognisable components in the lesson, with wellmanaged transition points	01
				...presents the lesson with a logical flow, moving from simple to complex	01
				...gives assignments clearly related to what students learned during instruction	01
				...ensures sufficient variation between instruction, teacher-led practice, and making assignments	01
	26	...ensures the orderly progression of the lesson	1234	Entering and leaving the classroom takes place in an orderly manner	01
				...intervenes in a timely and appropriate way to any order disruptions	01
				...acts as a 'watchdog' for agreed codes of behaviour and rules	01
				...makes sure that all students are involved in learning activities until the end of the lesson	01
				...makes sure that there is clarity about when and how students can obtain help to do their work in class	01
				...makes sure that there is clarity about what options are available when students have finished their assignments	01
	27	...uses learning time efficiently	1234	...starts lessons on time	01
				There is no loss of time at the start, during or at the end of the lesson	01
				There are no dead moments	01
				The children are not kept waiting	01
	28	...ensures efficient classroom management	1234	...makes clear which lesson materials should be used	01
				The lesson materials are ready to use	01
				Lesson materials are adapted to the level and the experience of the students	01
Adaptation of teaching to diverse needs of students	29	...adapts the instruction to the relevant differences between students	1234	...allows students who need less instruction to commence with the work	01
				...gives extra instruction to small groups or individual students	01
				...does not direct himself exclusively to the middle bracket	01
	30	...adapts the assignments and processing to the relevant differences between students	1234	...makes a distinction in the scope of the assignments between individual children	01
				...does not give all children the same time to complete the assignment	01
				...allows some children to make use of auxiliary materials	01
	31	...offers struggling learners extra learning or instruction time	1234	...offers struggling learners extra learning time	01
				...offers struggling learners extra instruction time	01
				...offers struggling learners extra time for practice	01
				...offers struggling learners pre instruction before formal instruction starts	01
				...offers struggling learners extra instruction when the formal instruction has ended	01
	32	...supports the self-confidence of struggling learners	1234	...feeds back on questions and answers from struggling learners in a positive way	01
				...expresses positive expectations to struggling learners about what they are able to take on	01
				...pays struggling learners compliments on their results	01
				...honours the contributions made by struggling learners	01

Teaching learning strategies	33	..stimulates students to think about solutions	1234	...gives students clues about solutions	01
				...teaches students search and reference strategies	01
				...teaches students the use of organisation resources	01
				...offers checklists for solving problems	01
	34	...let students speak aloud while thinking	1234	...offers students opportunities to give solutions	01
				...ask students to put their solutions into words	01
	35	...teaches students how to break down complicated problems	1234	...teaches students how to simplify problems	01
				...teaches students how to break down complicated problems into simple ones	01
				...teaches students how to bring order to complicated problems	01
	36	.teaches students how to check solutions	1234	...teaches students how to estimate outcomes	01
				...teaches students to predict outcomes	01
				...lets students relate outcomes to practical situations	01
	37	..ensures that the teaching materials are orientated towards transfer	1234	...promotes the conscious use of what has been learned in other areas	01
				...teaches students how to use solutions in other (different) contexts	01
				...relates problems to earlier solved problems	01
	38	..fosters critical thinking in students	1234	...asks students to identify the reasons why specific activities take place	01
				...invites students to give their opinions	01
				...asks the students to reflect on solutions or answers given	01
				...invites students to give their own examples	01
	39	...invites students to use strategies that can help them solve different types of problems	1234	...invites students to explain the steps of the problem-solving strategy they use	01
				...explicitly provides instruction in problem-solving strategies	01
				...invites students to explain the advantages and disadvantages of solutions	01
	40	.stimulates the use of control activities	1234	...gives attention to estimatory calculation/anticipatory reading	01
				...makes solutions relate to the context	01
				...stimulates the use of alternative solutions	01
	41	...provides interactive instruction and activities	1234	..facilitates mutual interaction between students	01
				...ensures interaction between students and the teacher	01
Indicator: Students			Rate ${ }^{1}$	Good practice examples: Students ...	Observed 2
Reflexivity and discursiveness	42	...plan their own learning process	1234	...plan a sequence of cognitive tools (computing steps, constructing steps)	01
				...plan a sequence of intermediate results	01
				...plan meta-cognitive activities	01
	43	...watch over their own thinking and learning process	1234	...control calculation	01
				...control terminology, notation and argumentation	01
				...control the reference to facts and aims	01
				... practise self-monitoring concerning own calculations, expressions or terminology	01

	44	...reflect on the appropriateness of solutions and methods used	1234	...reflect on each other's solutions and methods used	01
				...reflect the wilful choice of a representation (formula, graphic, term, text passage)	01
	45	...practise discursiveness	1234	..link a discourse contribution (naming of reference points or persons)	01
				...are sure of the conversation basis/linking of the following or preceding statement	01
				...are revealing the rules for the discourse	01
Involvement of students	46	There is good individual involvement by the students	1234	...are attentive	01
				...take part in learning/group discussions	01
				...work on the assignments in a concentrated and task-focused way	01
	47	...are interested	1234	...listen to the instructions actively	01
				...ask questions	01
	48	...are active learners	1234	...ask 'deeper' questions	01
				...take responsibility for their own learning process	01
				...work independently	01
				...take initiatives	01
				...use their time efficiently	01
Final judgement	49	The overall quality of teaching I assess as:	1234		
	50	The overall quality of the involvement of students \| assess as:	1234		

Appendix II

International Project Team

Wim van de Grift (project leader and author), Inspectorate of Education, Utrecht, The Netherlands and the University of Groningen, The Netherlands Phone: +31 612992069
E-mail: w.j.c.m.van.de.grift@owinsp.nl
Christa Kaune and Elmar Cohors-Fresenburg (observation instrument: Reflexivity and Discursiveness), University of Osnabrück, Germany

Ineke van Kampen (data analysis),
Inspectorate of Education, Utrecht, The Netherlands
Jaqui Horsburg (data co-ordination Scotland),
HM Inspectorate of Education, Dundee, Scotland

Zuzana Lukackova (data co-ordination Slovak Republic),
State School Inspection, Bratislava, Slovak Republic

Matthias Boeckermann and Norbert Sommer (data co-ordination Lower Saxony), School Inspection of Lower Saxony, Bad Iburg, Germany

Yvan Verbauwhede (data co-ordination Flanders), Inspectorate of Education, Brussels, Flanders, Belgium

Many thanks to all the inspectors who participated in the ICALT-project.

