

Brussels, 7 November 2014 (OR. en)

15115/14

Interinstitutional File: 2014/0286 (NLE)

Council of the European Union

LIMITE

CLIMA 98 ENV 878 ENER 448 TRANS 508 ENT 256

NOTE

From:	General Secretariat of the Council
To:	Delegations
No. Cion doc.:	14009/14 CLIMA 90 ENV 814 ENER 424 TRANS 465 ENT 218 IA 7 + ADD 1 - COM(2014) 617 final
Subject:	Proposal for a Council Directive on laying down calculation methods and reporting requirements pursuant to Directive 98/70/EC of the European Parliament and of the Council relating to the quality of petrol and diesel fuels
	- Presidency compromise text

With a view to the Working Party meeting on 13 November 2014, delegations will find in <u>Annex</u> a Presidency compromise text on the abovementioned proposal.

Delegations are invited to note that changes to the Commission's proposal are indicated in **bold underlined** and deletions by [...].

Proposal for a Council Directive on laying down calculation methods and reporting requirements pursuant to Directive 98/70/EC of the European Parliament and of the Council relating to the quality of petrol and diesel fuels

THE COUNCIL OF THE EUROPEAN UNION,

Having regard to the Treaty on the Functioning of the European Union,

Having regard to Directive 98/70/EC of the European Parliament and of the Council of 13 October 1998 relating to the quality of petrol and diesel fuels and amending Council Directive $93/12/EEC^1$, and in particular Article 7a(5) thereof,

Having regard to the proposal from the European Commission,

Whereas:

(1)The method for calculating greenhouse gas emissions of fuels and other energy from nonbiological sources to be established pursuant to Article 7a(5) of Directive 98/70/EC should yield reporting of sufficient accuracy so that the Commission could critically assess the performance of fuel suppliers in meeting their obligations under Article 7a(2) of Directive 98/70/EC. The calculation method should ensure measurement accuracy while having due regard for the complexity of the associated administrative requirements. At the same time, it should incentivise suppliers to reduce the greenhouse gas intensity of the fuel they supply. Careful consideration should also be given to the impact of the methodology on refineries in the Union. Hence, the calculation method should be based on average greenhouse gas intensities that represent an industry average value which is typical for a particular fuel source ("average default values"). This has the advantage of reducing the administrative burden on suppliers and Member States. At this time, the proposed methodology should not require the differentiation of the greenhouse gas intensity of fuel on the basis of the source of the raw material as this would affect current investments in certain refineries in the Union.

OJ L 350, 28.12.1998, p.58.

- (2) Reporting requirements for fuel suppliers which are small and medium-sized enterprises (SMEs) as defined in Commission Recommendation 2003/<u>3</u>61 should be minimised as far as in possible in the context of Article 7a(1) of Directive 98/70/EC. Similarly, importers of petrol and diesel refined outside the EU should not be obliged to provide detailed information about the sources of the crude oils used to make those fuels as this information may not be available or difficult to obtain.
- (3) In order to incentivise further greenhouse gas emission reductions, savings claimed from upstream emission reductions including from flaring and venting should be included in the calculation of suppliers' life cycle greenhouse gas emissions. In order to facilitate the claiming of upstream emissions savings by fuel suppliers, the use of various emission schemes should be allowed for calculating and certifying emission reductions. Only upstream reduction projects which start after the date of the establishment of the baseline set out in Article 7a(5)(b) i.e. 1 January 2011 should be eligible.
- (4) Weighted average greenhouse gas default values provide a simple method by which fuel suppliers may determine the greenhouse gas content of the fuel they supply. Such values representing the EU crude oil slate are contained, *inter alia*, in the "Well to Wheel" report (version 4) prepared by the JEC consortium, the studies commissioned by the European Commission from Dr. A. Brandt on natural bitumen and oil shale as well as the work undertaken for the European Commission by the International Council on Clean Transportation on upstream emissions in the context of the "oil production greenhouse gas emissions estimator" in connection with crude oils consumed in the EU.
- (5) Reductions in greenhouse gas emissions associated with oil and gas upstream emissions should be estimated and validated in accordance with principles and standards identified in International Standards and in particular ISO 14064, ISO 14065 and ISO 14066.

- (6) It is furthermore appropriate to facilitate the implementation by Member States of legislation as regards to savings claimed from upstream emission reductions, including from flaring and venting. To this end non-legislative guidance should be prepared under the auspices of the Commission on approaches to quantify, verify, validate, monitor and report such upstream emissions reduction (i.e. reductions in flaring and venting at production sites) prior to the end of the transposition period foreseen for this Directive.
- (7) Article7a(5)(b) of Directive 98/70/EC requires the establishment of a methodology to determine the aggregate greenhouse gas intensity of fuels from non-biological origin used in the Union in 2010 (the "fuel baseline standard"). The baseline standard should be based upon the volumes of diesel, petrol, non-road gas oil, liquefied petroleum gas and compressed natural gas using data officially reported to the UN Framework Convention on Climate Change in 2010. The fuel baseline standard should not be the fossil fuel comparator that is used for calculating greenhouse gas savings from biofuels, which should remain as set out in Annex IV to Directive 98/70/EC.
- (8) Since the composition of the relevant fossil fuel mix changes little from year to year, the aggregate variation in the greenhouse gas intensity of the fossil fuels from year to year will also be small. It is therefore appropriate that the fuel baseline standard is based on the 2010 Union average consumption data as reported by the Member States to the United Nations Framework Convention on the Climate Change.
- (9) The 2010 fuel baseline standard should represent an average upstream greenhouse gas intensity and average complex refinery greenhouse gas intensity for fossil fuels. Hence the baseline should be calculated using the respective fuel default values. The fuel baseline standard emission value should remain unchanged for the period up until 2020 in order to provide regulatory certainty to fuel suppliers in respect of their obligations to reduce the greenhouse gas intensity of the fuels they supply.

- (10) Article 7a(5)(d) of Directive 98/70/EC provides for the adoption of a methodology to calculate the contribution of electric road vehicles. Pursuant to that Article the methodology should be compatible with Article 3(4) of Directive 2009/28/EC of the European Parliament and of the Council². To ensure this compatibility, the same adjustment factor should be used for the powertrain efficiency.
- (11) Electric energy supplied for use in road transport may be reported by suppliers as laid down in Article 7a(1) of Directive 98/70/EC as part of their annual reports to the Member States. In order to limit administrative costs it is appropriate that the methodology be based on an estimate rather than an actual measurement of the consumption of electricity in an electric road vehicle or motorcycle for the purpose of supplier reporting.
- (12) It is appropriate to include a detailed approach for estimating the quantity and the greenhouse gas intensity of biofuels in cases where processing of a biofuel and a fossil fuel occurs during the same process. A specific method is needed because the resulting volume of the biofuel is not measurable such as during co-hydro treatment of vegetable oils with a fossil fuel. Article 7d(1) of Directive 98/70/EC stipulates that the life cycle greenhouse gas emissions should, for the purposes of Article 7a and Article 7b(2) of that Directive, be calculated with the same methodology. Therefore the certification of greenhouse gas emissions by recognised Voluntary Schemes is as valid for the purposes of Article 7a as it is for the purpose of Article 7b (2) of Directive 98/70/EC.
- (13) The required supplier reporting laid down in Article 7a(1) of Directive 98/70/EC should be supplemented by a harmonized format and definitions of the data to be reported. Harmonisation of the definitions of data is needed for the proper execution of the greenhouse gas intensity calculation linked to an individual supplier's reporting obligations as the data form key inputs into the method harmonised pursuant to Article 7a(5)(a) of Directive 98/70/EC. These data include the supplier identification, volume of fuel or energy placed on the market and fuel or energy type placed on the market.

² Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC (OJ L 140, 5.6.2009, p.16).

- (14) The required supplier reporting, outlined in Article 7a(1) of Directive 98/70/EC should be supplemented by harmonized reporting requirements, a reporting format and definitions for Member State reporting to the Commission pertaining to the greenhouse gas performance of fuels consumed in the Union. In particular, these reporting requirements will enable the updating of the fossil fuel comparator described in Point 19 of Part C of Annex IV, of Directive 98/70/EC and Point 19 of Part C of Annex V, Part C, of Directive 2009/28/EC, will facilitate the reporting required pursuant to Article 8(3) and Article 9(2) of Directive 98/70/EC and will facilitate updating of the calculation method to technical and scientific progress in order to ensure that it meets its intended purpose. These data include the volume of fuel or energy placed on the market and fuel or energy type, the place of purchase and the origin of the fuel or energy placed on the market.
- (15) It is appropriate for Member States to allow suppliers to fulfil their reporting requirements by relying on equivalent data being collected pursuant to other Union or national legislation so as to reduce the administrative burden provided that the reporting is conducted in accordance with the requirements set out in Annex IV and definitions laid down in Annexes I and III.
- (16) In order to facilitate reporting by groups of suppliers pursuant to Article 7a(4) of Directive 98/70/EC, Article 7a(5)(c) of that Directive allows for the establishment of any necessary rules. It is desirable to facilitate such reporting in order to avoid disruption to physical fuel movements since different suppliers place different fuels of differing proportions on the market and hence may have to deploy different levels of resources to meet the greenhouse gas reduction target. Hence, it is necessary to harmonize the definitions of the supplier identification, the volume of fuel or energy placed on the market, the fuel or energy type, the place of purchase and the origin of the fuel or energy placed on the market. Furthermore, to avoid double counting in [...] joint supplier reporting **pursuant to Article 7a(4)**, it is appropriate to harmonise Member State **implementation including** reporting to the Commission so that the requisite information <u>from [...]</u> a group of [...] suppliers <u>relates to a specific</u> Member State [...].

- (17) Pursuant to Article 8(3) of Directive 98/70/EC, Member States are to submit an annual report of national fuel quality data for the preceding year in accordance with the format established in Commission Decision 2002/159/EC of 18 February 2002³. To cover the amendments introduced to Directive 98/70/EC by Directive 2009/30/EC of the European Parliament and of the Council ⁴ and the subsequent additional reporting requirements on the Member States it is necessary in the interest of effectiveness and harmonization to clarify which information, falling under the reporting obligation on fuel quality data in Article 8 of Directive 98/70/EC, should be reported and also adopt a format for the submission of data by suppliers and Member States.
- (18) The Commission presented a draft measure to the Committee established by Directive 98/70/EC on 23 February 2012. The Committee was unable to adopt an opinion by the necessary qualified majority and it is therefore appropriate for the Commission to present a proposal to the Council pursuant to Article 5a(4) of Council Decision 2006/512/EC.

HAS ADOPTED THIS DIRECTIVE:

Article 1

Scope

This Directive applies to fuels used to propel road vehicles, and non-road mobile machinery (including inland waterway vessels when not at sea), agri-cultural and forestry tractors, and recreational craft when not at sea and electricity for use in road vehicles.

³ Commission Decision 2002/159/EC of 18 February 2002 on a common format for the submission of summaries of national fuel quality data (OJ L 53, 23.2.2002, p. 30).

⁴ Directive 2009/30/EC of the European Parliament and of the Council of 23 April 2009 amending Directive 98/70/EC as regards the specification of petrol, diesel and gas-oil and introducing a mechanism to monitor and reduce greenhouse gas emissions and amending Council Directive 1999/32/EC as regards the specification of fuel used by inland waterway vessels and repealing Directive 93/12/EEC (OJ L 140, 5.6.2009, p. 88).

Article 2

Definitions

For the purposes of this Directive, and in addition to the definitions already contained in Directive 98/70/EC, the following definitions shall apply:

- "upstream emissions" means all greenhouse gas emissions occurring prior to the raw (1)material entering a refinery or a processing plant where the fuel, as referred to in Annex I, was produced;
- (2)"natural bitumen raw material" means any source of refinery raw material that:
 - has an American Petroleum Institute Gravity of 10 degrees or less when situated in a reservoir formation at the place of extraction as defined pursuant to testing method American Society for Testing and Materials (ASTM)⁵ D287;
 - has an annual average viscosity at reservoir temperature greater than that calculated by the equation: Viscosity (Centipoise) = 518.98e-0.038T; where T is the temperature in Celsius;
- falls within the definition for tar sands under combined nomenclature code CN 2714 as outlined in Council Regulation (EEC) No 2658/87⁶; and
- where the mobilization of the source of the raw material is achieved by mining extraction or thermally enhanced gravity drainage where the thermal energy is mainly derived from sources other than the feedstock source itself;
- "oil shale raw material" means any source of refinery raw material as situated in a (3) rock formation containing solid kerogen and falling within the definition for oil shale under CN 2714 outlined in Regulation (EEC) No 2658/87²⁷. Mobilization of the source of the raw material is achieved by mining extraction or thermally enhanced gravity drainage.

5 American Society for Testing and Materials, http://www.astm.org/index.shtml 6 Council Regulation (EEC) No 2658/87 of 23 July 1987 on the tariff and statistical nomenclature and on the Common Customs Tariff (OJ L 256, 07.09.1987, p. 1).

(4) "conventional crude" means any refinery raw material exhibiting an American Petroleum Institute Gravity that is higher than 10 degrees when situated in a reservoir formation at its place of origin as measured per testing method ASTM D287 and not falling within the definition for CN 2714 as set out in Regulation (EEC) No 2658/87²⁷.

Article 3

Methodology for calculating the greenhouse gas intensity of fuels and energy supplied other than biofuels and reporting by fuel suppliers

- 1. For the purposes of Articles 7a(2), Member States shall ensure that fuel suppliers use the methodology set out in Annex I to determine the greenhouse gas intensity of the fuels they supply.
- 2. For the purposes of the second subparagraph of Article 7a(1) and Article 7a(2) of Directive 98/70/EC Member States shall require suppliers to report data using the definitions and the calculation methodology set out in Annex I to this Directive. The data shall be reported annually using the template set out in Annex IV to this Directive. For the purposes of Article 7a(4) any Member State shall ensure that a group of suppliers choosing to be considered as a single supplier meets its obligation under Article 7a (2) within that Member State.
- 3. Member States shall apply the simplified methodology set out in Annex I to this Directive for fuel suppliers that are small and medium-sized enterprises.

Article 4

Calculation of fuel baseline standard and greenhouse gas intensity reduction

For the purposes of verifying compliance by fuel suppliers with their obligation under Article 7a(2) of Directive 98/70/EC, Member States shall require suppliers to compare their achieved reductions of life cycle greenhouse emissions from fuels and from electric energy to the fuel baseline standard set out in Annex II to this Directive.

Article 5

Reporting by Member States

- When submitting reports to the Commission under Article 8(3) of Directive 98/70/EC, Member States shall provide the Commission with data related to compliance with Article 7a of that Directive as defined in Annex III to this Directive.
- 2. Member States shall use the ReportNet tools of the European Environment Agency, provided pursuant to Regulation (EC) No 401/2009⁷, for the submission of the data set out in Annex III to this Directive. The data shall be transmitted by the Member States by means of electronic data transfer to the Central Data Repository managed by the European Environmental Agency using the template prepared on the basis of Annex IV and provided therein.
- 3. The data shall be provided annually using the format prescribed in Annex IV. Member States shall notify to the Commission the date of the transmission and the contact name of the competent authority responsible for verifying and reporting the data to the Commission.

Article 6

Penalties

Member States shall lay down the rules on penalties applicable to infringements of the national provisions adopted pursuant to this Directive and shall take all measures necessary to ensure that they are implemented. The penalties provided for must be effective, proportionate and dissuasive. Member States shall notify those provisions to the Commission by [twenty-four months after adoption] at the latest and shall notify it without delay of any subsequent amendment affecting them.

 ⁷ Regulation (EC) No 401/2009 of the European Parliament and of the Council of 23 April 2009 on the European Environment Agency and the European Environment Information and Observation Network (OJ L 126, 21/05/2009, p. 13).

Article 7

Transposition

- Member States shall bring into force the laws, regulations and administrative provisions necessary to comply with this Directive by [<u>twenty-four</u> months after adoption] at the latest. They shall forthwith communicate to the Commission the text of those provisions.
- When Member States adopt those provisions, they shall contain a reference to this Directive or be accompanied by such a reference on the occasion of their official publication. The methods of making such reference shall be laid down by Member States.
- 3. Member States shall communicate to the Commission the text of the main provisions of national law which they adopt in the field covered by this Directive.

Article 8

Entry into force

This Directive shall enter into force on the twentieth day following that of its publication in the *Official Journal of the European Union*.

Article 9

This Directive is addressed to the Member States.

Done at Brussels,

For the Council The President

Annex I

Methodology for the calculation and reporting of the life cycle greenhouse gas intensity of fuels and energy by fuel suppliers

<u> Part 1:</u>

When calculating a fuel supplier's greenhouse gas intensity of fuels and energy:

- The greenhouse gas intensity for fuels and energy is expressed in terms of grams of carbon dioxide equivalent per Mega Joule of fuel (gCO₂eq/MJ);
- The greenhouse gases taken into account for the purposes of calculating the greenhouse gas intensity of fuel is carbon dioxide (CO₂), nitrous oxide (N₂O) and methane (CH₄). For the purpose of calculating CO₂ equivalence, emissions of those gases are valued in terms of CO₂ equivalent emissions as follows:

 $CO_2{:}\ 1;\ CH_4{:}\ 25;\ N_2O{:}\ 298$

- 2. Emissions from the manufacture of machinery and equipment utilized in extraction, production, refining and consumption of fossil fuels shall not be taken into account in the greenhouse gas calculation.
- 3. A fuel supplier's greenhouse gas intensity from the life cycle of all fuels supplied shall be calculated in accordance with the formula below:

$$\frac{\sum_{x} (GHGi_{x} \times AF \times MJ_{x}) - UER}{\sum_{x} MJ_{x}}$$

A supplier's greenhouse gas intensity (#) =

Where:

- (a) "#"means the supplier's identification (person liable to pay duty) defined in Regulation (EC) No 684/2009 as the Trader Excise Number (SEED registration number or VAT ID number in Table 1 point 5 (a) of Annex I to that Regulation for Destination Type codes 1, 2, 3, 4, 5 and 8) which is also the entity liable to pay the excise duty in accordance with Article 8 of Council Directive 2008/118/EC at the time excise duty became chargeable in accordance with Article 7(2) of Directive 2008/118/EC. If this identification is not available Member States shall ensure that an equivalent means of identification is established in accordance with a national excise duty reporting scheme.
- (b) "x" means the fuel and energy types falling within the scope of this Directive as expressed in Table 1 - point17(c) of Annex I to Regulation (EC) No 684/2009. If these data are not available, Member States shall collect equivalent data in accordance with a nationally established excise duty reporting scheme.
- "MJ_x" means the total energy supplied and converted from reported volumes of fuel
 "x" expressed in Mega Joules. This is calculated as follows:

The quantity of each fuel per fuel type

Is derived from data reported pursuant to Table 1 – point 17 (d), (f), and (o) of Annex I to Regulation (EC) No 684/2009. Biofuel quantities are converted to their lower-heat-value energy content pursuant to the energy densities set out in Annex III to Directive 2009/28/EC¹. Quantities of fuels from non-biological origin are converted to their lower-heat-value energy content pursuant to energy densities set out in Appendix 1 to the JEC Well-to-Tank report².

¹ Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC (OJ L 140, 5.6.2009, p.16).

² http://iet.jrc.ec.europa.eu/about-jec/sites/about-jec/files/documents/report_2013/wtt_report_v4_july_2013_final.pdf

Simultaneous co-processing of fossil fuels and biofuels

Processing includes any modification during the life cycle of a fuel or energy supplied causing a change to the molecular structure of the product. The addition of denaturant does not fall under this processing. The volume of biofuels co-processed with fuels from non-biological origin reflects the post-processing state of the biofuel. The energy quantity of the co-processed biofuel is determined according to the energy balance and efficiency of the co-processing process as set out in Annex IV (17) of Directive 98/70/EC.

Where multiple biofuels are blended with fossil fuels the quantity and type of each biofuel is taken into account in the calculation and reported by suppliers to the Member States.

The volume of biofuel supplied that does not meet the requirements of Article 7b(1) of Directive 98/70/EC is counted as fossil fuel.

E85 petrol-ethanol blend shall be calculated as a separate fuel for the purpose of Article 6 of Regulation (EC) No 443/2009 of the European Parliament and of the Council³.

If quantities are not collected pursuant to Regulation (EC) No 684/2009, Member States shall collect equivalent data in accordance with a nationally established excise duty reporting scheme.

Quantity of electric energy consumed

Is the amount of electricity consumed in road vehicles or motorcycles where an energy supplier reports this amount of energy to the relevant authority in the Member State in accordance with the following formula:

Electric energy consumed = distance travelled (km) x electric energy consumption efficiency (MJ/km).

³ OJ L 140, 5.6.2009, p. 1.

(d) UER

"UER" is the upstream emission reduction of greenhouse gases claimed by a fuel supplier measured in gCO₂eq if quantified and reported in accordance with the following requirements:

<u>Eligibility</u>

Voluntary greenhouse gas emission reductions at oil and gas production and extraction sites shall only be applied to the upstream emission's part of the default values for petrol, diesel, CNG or LPG.

Upstream greenhouse gas emission reductions originating from any country may be counted as a reduction in greenhouse gas emissions against fuels from any feedstock source supplied by any fuel supplier.

Upstream greenhouse gas emission reductions shall only be counted if they are associated with projects that have started after 1 January 2011

It is not necessary to prove that upstream emission reductions would not have taken place without the Article 7a reporting requirement.

Calculation

Greenhouse gas reductions associated with oil and gas upstream emissions will be estimated and validated in accordance with principles and standards identified in International Standards and in particular ISO 14064, ISO 14065 and ISO 14066.

The UERs and baseline emissions are to be monitored, reported and verified in accordance with ISO 14064 and providing results of equivalent confidence of Regulation (EU) No 600/2012 and Regulation (EU) No 601/2012. The verification of methods for estimating UERs must be done in accordance with ISO 14064-3 and the organisation verifying this must be accredited in accordance with ISO 14065.

(e) "GHGix" is the unit greenhouse gas intensity of fuel "x" expressed in gCO₂eq/MJ.Fuel suppliers shall define the unit intensity of each fuel as follows:

<u>Greenhouse gas intensity of fuels</u> from a non-biological origin is the "weighted unit life cycle greenhouse gas intensity" per fuel type listed in the last column of the table under Part 2 point (5) of this Annex.

Electrical energy is calculated as described in Part 2 point (6) below.

Greenhouse gas intensity of biofuels

The greenhouse gas intensity of biofuels meeting the requirements of Article 7b(1) of Directive 98/70/EC is calculated in accordance with Article 7d of that Directive. In case data on the life cycle greenhouse gas emissions of biofuels was obtained in accordance with an agreement or scheme that has been the subject of a decision pursuant Article 7c(4) of Directive 98/70/EC covering Article 7b(2) of that Directive this data is also be used to establish the greenhouse gas intensity of biofuels under Article 7b(1) of that Directive. The greenhouse gas intensity for biofuels not meeting the requirements of Article 7b(1) of Directive 98/70/EC is equal to the greenhouse intensity of the respective fossil fuel derived from conventional crude oil or gas.

Simultaneous co-processing of fuels from non-biological origin and biofuels

The greenhouse gas intensity of biofuels co-processed with fossil fuels shall reflect the post-processing state of the biofuel.

(f) "AF" represents the adjustment factors for powertrain efficiencies:

Predominant conversion technology	Efficiency factor
Internal combustion engine	1
Battery electric powertrain	0.4
Hydrogen fuel cell electric powertrain	0.4

Part 2: Reporting by fuel suppliers

(1) Upstream Emissions reductions (UERs)

In order for upstream emissions reductions to be eligible for the purposes of this methodology fuel suppliers shall report to the authority designated by the Member States the:

- (i) starting date of the project which must be after 1 January 2011;
- (ii) annual emission reductions in gCO₂eq;
- (iii) duration for which the claimed reductions occurred;
- (iv) project location closest to the source of the emissions in latitude and longitude coordinates in degrees to the fourth decimal place;
- (v) baseline annual emissions prior to installation of reduction measures and annual emissions after the reduction measures have been implemented in gCO₂eq/MJ of feedstock produced;
- (vi) non-reusable certificate number uniquely identifying the scheme and the claimed greenhouse gas reductions
- (vii) non-reusable number uniquely identifying the calculation method and the associated scheme;
- (viii) where the project relates to oil extraction, the average annual historical and reporting year gas-to-oil ratio (GOR) in solution, reservoir pressure, depth and well production rate of the crude oil.

(2) Origin

"Origin" means the feedstock trade name listed in Part 2 point (7) of this Annex but only where fuel suppliers hold the necessary information by virtue of (i) being a person or undertaking importing crude oil from third countries or receiving a crude oil delivery from another Member State pursuant to Article 1 of Council Regulation (EC) No 2964/95; or (ii) arrangements to share information agreed with other fuel suppliers. In all other cases, origin shall refer to whether the fuel is of EU or non-EU origin.

The information collected and reported by fuel suppliers to the Member States concerning the origin of fuels shall be confidential but this shall not prevent the publication by the Commission of general information or information in summary form which does not contain details relating to individual undertakings.

For biofuels origin means the biofuel production pathway set out in Annex IV of Directive 98/70/EC.

Where multiple feedstocks are used, the quantity in metric tonnes of finished product per type of each feedstock produced in the respective processing facility during the reporting year shall be provided.

(3) Place of purchase

"Place of purchase" means the country and name of the processing facility where the fuel or energy underwent the last substantial transformation used to confer the origin of the fuel or energy in accordance with Commission Regulation (EEC) No 2454/93.

(4) Small and medium-sized enterprises

By way of derogation for fuel suppliers that are small and medium-sized enterprises, "origin" and "place of purchase" is either EU or non-EU, as appropriate, irrespective of whether they import crude oil or they supply petroleum oils and oils obtained from bituminous materials. (5) 2010 average life cycle greenhouse gas default values for fuels other than biofuels and electric energy

Raw material	Fuel or energy	Life cycle	Weighted life
source and process	type placed on	unit GHG	cycle unit GHG
	the market	intensity	intensity
		(gCO ₂ eq/MJ)	(gCO ₂ eq/MJ)
Conventional	Petrol	93.2	
crude			
		0.4.2	
Natural Gas-to-		94.3	93.3
Liquid			
Coal-to-Liquid		172	
		107	
Natural bitumen		107	
Oil shale		131.3	•
Conventional	Diesel or gasoil	95	
crude			
Natural Gas-to-		94 3	051
Liquid		51.5	95.1
1			
Coal-to-Liquid		172	
Natural bitumen		108.5	
Oil shale		133.7	
	X ·	7 2 (72.6
Any fossil sources	Liquefied	73.6	73.6
	in a sport		
	in a spark		
	ignition engine		
Natural Gas, EU	Compressed Gas	69.3	69.3
mix	in a spark		
	ignition engine		
Natural Gas, EU	Liquefied Gas in	74.5	74.5
mix	a spark ignition		
	engine		

Sabatier reaction of hydrogen from non-biological renewable energy electrolysis	Compressed synthetic methane in a spark ignition engine	3.3	3.3
Natural gas using steam reforming	Compressed Hydrogen in a fuel cell	104.3	104.3
Electrolysis fully powered by non- biological renewable energy	Compressed Hydrogen in a fuel cell	9.1	9.1
Coal	Compressed Hydrogen in a fuel cell	234.4	234.4
Coal with Carbon Capture and Storage of process emissions	Hydrogen in a fuel cell	52.7	52.7
Waste plastic derived from fossil feedstocks	Petrol, diesel or gasoil	86	86

(6) Electrical energy

For the reporting by energy suppliers of electricity consumed by electric vehicles and motorcycles, Member States should calculate national average life cycle default values in accordance with appropriate International Standards.

Alternatively Member States may permit their suppliers to establish unit greenhouse gas intensity values (gCO₂eq/MJ) for electricity from data reported by Member States on the basis of:

- Regulation (EC) No 1099/2008 of the European Parliament and of the Council of 22 October 2008 on energy statistics or,
- (ii) Regulation (EU) No 525/2013 of the European Parliament and of the Council on a mechanism for monitoring and reporting greenhouse gas emissions and for reporting other information at national and Union level relevant to climate change or,
- (iii) Commission delegated regulation (EU) No 666/2014 establishing substantive requirements for a Union inventory system and taking into account changes in the global warming potentials and internationally agreed inventory guidelines pursuant to Regulation (EU) No 525/2013 of the European Parliament and of the Council.

Country	Feedstock trade name	API	Sulphur (wt %)
Abu Dhabi	Al Bunduq	38.5	1.1
Abu Dhabi	Mubarraz	38.1	0.9
Abu Dhabi	Murban	40.5	0.8
Abu Dhabi	Zakum (Lower Zakum/Abu Dhabi Marine)	40.6	1
Abu Dhabi	Umm Shaif (Abu Dhabi Marine)	37.4	1.5
Abu Dhabi	Arzanah	44	0
Abu Dhabi	Abu Al Bu Khoosh	31.6	2
Abu Dhabi	Murban Bottoms	21.4	NOT AVAILABLE (NA)
Abu Dhabi	Top Murban	21	NA
Abu Dhabi	Upper Zakum	34.4	1.7

(7)	Feedstock	trade	name
(')	recustoen	uuuu	manne

Country	Feedstock trade name	API	Sulphur (wt
			%)
Algeria	Arzew	44.3	0.1
Algeria	Hassi Messaoud	42.8	0.2
Algeria	Zarzaitine	43	0.1
Algeria	Algerian	44	0.1
Algeria	Skikda	44.3	0.1
Algeria	Saharan Blend	45.5	0.1
Algeria	Hassi Ramal	60	0.1
Algeria	Algerian Condensate	64.5	NA
Algeria	Algerian Mix	45.6	0.2
Algeria	Algerian Condensate (Arzew)	65.8	0
Algeria	Algerian Condensate (Bejaia)	65.0	0
Algeria	Top Algerian	24.6	NA
Angola	Cabinda	31.7	0.2
Angola	Takula	33.7	0.1
Angola	Soyo Blend	33.7	0.2
Angola	Mandji	29.5	1.3
Angola	Malongo (West)	26	NA
Angola	Cavala-1	42.3	NA
Angola	Sulele (South-1)	38.7	NA
Angola	Palanca	40	0.14
Angola	Malongo (North)	30	NA
Angola	Malongo (South)	25	NA
Angola	Nemba	38.5	0
Angola	Girassol	31.3	NA

Country	Feedstock trade name	API	Sulphur (wt
			%)
Angola	Kuito	20	NA
Angola	Hungo	28.8	NA
Angola	Kissinje	30.5	0.37
Angola	Dalia	23.6	1.48
Angola	Gimboa	23.7	0.65
Angola	Mondo	28.8	0.44
Angola	Plutonio	33.2	0.036
Angola	Saxi Batuque Blend	33.2	0.36
Angola	Xikomba	34.4	0.41
Argentina	Tierra del Fuego	42.4	NA
Argentina	Santa Cruz	26.9	NA
Argentina	Escalante	24	0.2
Argentina	Canadon Seco	27	0.2
Argentina	Hidra	51.7	0.05
Argentina	Medanito	34.93	0.48
Armenia	Armenian Miscellaneous	NA	NA
Australia	Jabiru	42.3	0.03
Australia	Kooroopa (Jurassic)	42	NA
Australia	Talgeberry (Jurassic)	43	NA
Australia	Talgeberry (Up Cretaceous)	51	NA
Australia	Woodside Condensate	51.8	NA
Australia	Saladin-3 (Top Barrow)	49	NA

Country	Feedstock trade name	API	Sulphur (wt
			%)
Australia	Harriet	38	NA
Australia	Skua-3 (Challis Field)	43	NA
Australia	Barrow Island	36.8	0.1
Australia	Northwest Shelf Condensate	53.1	0
Australia	Jackson Blend	41.9	0
Australia	Cooper Basin	45.2	0.02
Australia	Griffin	55	0.03
Australia	Buffalo Crude	53	NA
Australia	Cossack	48.2	0.04
Australia	Elang	56.2	NA
Australia	Enfield	21.7	0.13
Australia	Gippsland (Bass Strait)	45.4	0.1
Azerbaijan	Azeri Light	34.8	0.15
Bahrain	Bahrain Miscellaneous	NA	NA
Belarus	Belarus Miscellaneous	NA	NA
Benin	Seme	22.6	0.5
Benin	Benin Miscellaneous	NA	NA
Belize	Belize Light Crude	40	NA
Belize	Belize Miscellaneous	NA	NA
Bolivia	Bolivian Condensate	58.8	0.1
Brazil	Garoupa	30.5	0.1
Brazil	Sergipano	25.1	0.4
Brazil	Campos Basin	20	NA

Country	Feedstock trade name	API	Sulphur (wt
			%)
Brazil	Urucu (Upper Amazon)	42	NA
Brazil	Marlim	20	NA
Brazil	Brazil Polvo	19.6	1.14
Brazil	Roncador	28.3	0.58
Brazil	Roncador Heavy	18	NA
Brazil	Albacora East	19.8	0.52
Brunei	Seria Light	36.2	0.1
Brunei	Champion	24.4	0.1
Brunei	Champion Condensate	65	0.1
Brunei	Brunei LS Blend	32	0.1
Brunei	Brunei Condensate	65	NA
Brunei	Champion Export	23.9	0.12
Cameroon	Kole Marine Blend	34.9	0.3
Cameroon	Lokele	21.5	0.5
Cameroon	Moudi Light	40	NA
Cameroon	Moudi Heavy	21.3	NA
Cameroon	Ebome	32.1	0.35
Cameroon	Cameroon Miscellaneous	NA	NA
Canada	Peace River Light	41	NA
Canada	Peace River Medium	33	NA
Canada	Peace River Heavy	23	NA
Canada	Manyberries	36.5	NA
Canada	Rainbow Light and Medium	40.7	NA
Canada	Pembina	33	NA

Country	Feedstock trade name	API	Sulphur (wt
			%)
Canada	Bells Hill Lake	32	NA
Canada	Fosterton Condensate	63	NA
Canada	Rangeland Condensate	67.3	NA
Canada	Redwater	35	NA
Canada	Lloydminster	20.7	2.8
Canada	Wainwright- Kinsella	23.1	2.3
Canada	Bow River Heavy	26.7	2.4
Canada	Fosterton	21.4	3
Canada	Smiley-Coleville	22.5	2.2
Canada	Midale	29	2.4
Canada	Milk River Pipeline	36	1.4
Canada	Ipl-Mix Sweet	40	0.2
Canada	Ipl-Mix Sour	38	0.5
Canada	Ipl Condensate	55	0.3
Canada	Aurora Light	39.5	0.4
Canada	Aurora Condensate	65	0.3
Canada	Reagan Field	35	0.2
Canada	Synthetic Canada	30.3	1.7
Canada	Cold Lake	13.2	4.1
Canada	Cold Lake Blend	26.9	3
Canada	Canadian Federated	39.4	0.3
Canada	Chauvin	22	2.7
Canada	Gcos	23	NA
Canada	Gulf Alberta L & M	35.1	1

Country	Feedstock trade name	API	Sulphur (wt
			%)
Canada	Light Sour Blend	35	1.2
Canada	Lloyd Blend	22	2.8
Canada	Peace River Condensate	54.9	NA
Canada	Sarnium Condensate	57.7	NA
Canada	Saskatchewan Light	32.9	NA
Canada	Sweet Mixed Blend	38	0.5
Canada	Syncrude	32	0.1
Canada	Rangeland – South L & M	39.5	0.5
Canada	Northblend Nevis	34	NA
Canada	Canadian Common Condensate	55	NA
Canada	Canadian Common	39	0.3
Canada	Waterton Condensate	65.1	NA
Canada	Panuke Condensate	56	NA
Canada	Federated Light and Medium	39.7	2
Canada	Wabasca	23	NA
Canada	Hibernia	37.3	0.37
Canada	BC Light	40	NA
Canada	Boundary	39	NA
Canada	Albian Heavy	21	NA
Canada	Koch Alberta	34	NA
Canada	Terra Nova	32.3	NA
Canada	Echo Blend	20.6	3.15
Canada	Western Canadian Blend	19.8	3
Canada	Western Canadian Select	20.5	3.33

Country	Feedstock trade name	API	Sulphur (wt
			%)
Canada	White Rose	31.0	0.31
Canada	Access	22	NA
Canada	Premium Albian Synthetic Heavy	20.9	NA
Canada	Albian Residuum Blend (ARB)	20.03	2.62
Canada	Christina Lake	20.5	3
Canada	CNRL	34	NA
Canada	Husky Synthetic Blend	31.91	0.11
Canada	Premium Albian Synthetic (PAS)	35.5	0.04
Canada	Seal Heavy(SH)	19.89	4.54
Canada	Suncor Synthetic A (OSA)	33.61	0.178
Canada	Suncor Synthetic H (OSH)	19.53	3.079
Canada	Peace Sour	33	NA
Canada	Western Canadian Resid	20.7	NA
Canada	Christina Dilbit Blend	21.0	NA
Canada	Christina Lake Dilbit	38.08	3.80
Chile	Chile Miscellaneous	NA	NA
Chad	Doba Blend (Early Production)	24.8	0.14
Chad	Doba Blend (Later Production)	20.8	0.17
China	Taching (Daqing)	33	0.1
China	Shengli	24.2	1
China	Beibu	NA	NA

Country	Feedstock trade name	API	Sulphur (wt
			%)
China	Chengbei	17	NA
China	Lufeng	34.4	NA
China	Xijiang	28	NA
China	Wei Zhou	39.9	NA
China	Liu Hua	21	NA
China	Boz Hong	17	0.282
China	Peng Lai	21.8	0.29
China	Xi Xiang	32.18	0.09
Colombia	Onto	35.3	0.5
Colombia	Putamayo	35	0.5
Colombia	Rio Zulia	40.4	0.3
Colombia	Orito	34.9	0.5
Colombia	Cano-Limon	30.8	0.5
Colombia	Lasmo	30	NA
Colombia	Cano Duya-1	28	NA
Colombia	Corocora-1	31.6	NA
Colombia	Suria Sur-1	32	NA
Colombia	Tunane-1	29	NA
Colombia	Casanare	23	NA
Colombia	Cusiana	44.4	0.2
Colombia	Vasconia	27.3	0.6
Colombia	Castilla Blend	20.8	1.72
Colombia	Cupiaga	43.11	0.082
Colombia	South Blend	28.6	0.72

Country	Feedstock trade name	API	Sulphur (wt
			%)
Congo	Emeraude	23.6	0.5
(Brazzaville)			
Contra	Diana Dian I	2(0	0.2
Congo (Brazzaville)	Djeno Blend	26.9	0.3
(Drazzavine)			
Congo	Viodo Marina-1	26.5	NA
(Brazzaville)			
Congo	Nkossa	47	0.03
(Brazzaville)			
Congo (Vinghaga)	Muanda	24	0.1
Congo (Kinshasa)	Iviualiua	54	0.1
Congo (Kinshasa)	Congo/Zaire	31.7	0.1
Congo (Ixinshasa)	Congo/Zane	51.7	0.1
Congo (Kinshasa)	Coco	30.4	0.15
Cote d'Ivoire	Espoir	31.4	0.3
Cote d'Ivoire	Lion Cote	41.1	0.101
D 1	D	20.4	0.2
Denmark	Dan	30.4	0.3
Denmark	Gorm	33.0	0.2
	Gom		0.2
Denmark	Danish North Sea	34.5	0.26
D 1	$\mathbf{D} 1$ ($\mathbf{T} + 1$)	21.1	
Dubai	Dubai (Faten)	31.1	2
Dubai	Margham Light	50.3	0
Ecuador	Oriente	29.2	1
Ecuador	Quito	29.5	0.7
Ecuador	Santa Elena	35	0.1
Ecuador	Limoncoha-1	28	NA
Ecuador	Frontera-1	30.7	NA
		01.0	
Ecuador	Bogi-1	21.2	NA

Country	Feedstock trade name	API	Sulphur (wt
			%)
Ecuador	Napo	19	2
Ecuador	Napo Light	19.3	NA
Egypt	Belayim	27.5	2.2
Egypt	El Morgan	29.4	1.7
Egypt	Rhas Gharib	24.3	3.3
Egypt	Gulf of Suez Mix	31.9	1.5
Egypt	Geysum	19.5	NA
Egypt	East Gharib (J-1)	37.9	NA
Egypt	Mango-1	35.1	NA
Egypt	Rhas Budran	25	NA
Egypt	Zeit Bay	34.1	0.1
Egypt	East Zeit Mix	39	0.87
Equatorial Guinea	Zafiro	30.3	NA
Equatorial Guinea	Alba Condensate	55	NA
Equatorial Guinea	Ceiba	30.1	0.42
Gabon	Gamba	31.8	0.1
Gabon	Mandji	30.5	1.1
Gabon	Lucina Marine	39.5	0.1
Gabon	Oguendjo	35	NA
Gabon	Rabi-Kouanga	34	0.6
Gabon	T'Catamba	44.3	0.21
Gabon	Rabi	33.4	0.06
Gabon	Rabi Blend	34	NA

Country	Feedstock trade name	API	Sulphur (wt
			%)
Gabon	Rabi Light	37.7	0.15
Gabon	Etame Marin	36	NA
Gabon	Olende	17.6	1.54
Gabon	Gabonian Miscellaneous	NA	NA
Georgia	Georgian Miscellaneous	NA	NA
Ghana	Bonsu	32	0.1
Ghana	Salt Pond	37.4	0.1
Guatemala	Coban	27.7	NA
Guatemala	Rubelsanto	27	NA
India	Bombay High	39.4	0.2
Indonesia	Minas (Sumatron Light)	34.5	0.1
Indonesia	Ardjuna	35.2	0.1
Indonesia	Attaka	42.3	0.1
Indonesia	Suri	18.4	0.2
Indonesia	Sanga Sanga	25.7	0.2
Indonesia	Sepinggan	37.9	0.9
Indonesia	Walio	34.1	0.7
Indonesia	Arimbi	31.8	0.2
Indonesia	Poleng	43.2	0.2
Indonesia	Handil	32.8	0.1
Indonesia	Jatibarang	29	0.1
Indonesia	Cinta	33.4	0.1
Indonesia	Bekapai	40	0.1
Indonesia	Katapa	52	0.1

Country	Feedstock trade name	API	Sulphur (wt
			%)
Indonesia	Salawati	38	0.5
Indonesia	Duri (Sumatran Heavy)	21.1	0.2
Indonesia	Sembakung	37.5	0.1
Indonesia	Badak	41.3	0.1
Indonesia	Arun Condensate	54.5	NA
Indonesia	Udang	38	0.1
Indonesia	Klamono	18.7	1
Indonesia	Bunya	31.7	0.1
Indonesia	Pamusian	18.1	0.2
Indonesia	Kerindigan	21.6	0.3
Indonesia	Melahin	24.7	0.3
Indonesia	Bunyu	31.7	0.1
Indonesia	Camar	36.3	NA
Indonesia	Cinta Heavy	27	NA
Indonesia	Lalang	40.4	NA
Indonesia	Kakap	46.6	NA
Indonesia	Sisi-1	40	NA
Indonesia	Giti-1	33.6	NA
Indonesia	Ayu-1	34.3	NA
Indonesia	Bima	22.5	NA
Indonesia	Padang Isle	34.7	NA
Indonesia	Intan	32.8	NA
Indonesia	Sepinggan - Yakin Mixed	31.7	0.1
Indonesia	Widuri	32	0.1

Country	Feedstock trade name	API	Sulphur (wt
			%)
Indonesia	Belida	45.9	0
Indonesia	Senipah	51.9	0.03
Iran	Iranian Light	33.8	1.4
Iran	Iranian Heavy	31	1.7
Iran	Soroosh (Cyrus)	18.1	3.3
Iran	Dorrood (Darius)	33.6	2.4
Iran	Rostam	35.9	1.55
Iran	Salmon (Sassan)	33.9	1.9
Iran	Foroozan (Fereidoon)	31.3	2.5
Iran	Aboozar (Ardeshir)	26.9	2.5
Iran	Sirri	30.9	2.3
Iran	Bahrgansar/Nowruz (SIRIP Blend)	27.1	2.5
Iran	Bahr/Nowruz	25.0	2.5
Iran	Iranian Miscellaneous	NA	NA
Iraq	Basrah Light (Pers. Gulf)	33.7	2
Iraq	Kirkuk (Pers. Gulf)	35.1	1.9
Iraq	Mishrif (Pers. Gulf)	28	NA
Iraq	Bai Hasson (Pers. Gulf)	34.1	2.4
Iraq	Basrah Medium (Pers. Gulf)	31.1	2.6
Iraq	Basrah Heavy (Pers. Gulf)	24.7	3.5
Iraq	Kirkuk Blend (Pers. Gulf)	35.1	2
Iraq	N. Rumalia (Pers. Gulf)	34.3	2
Iraq	Ras el Behar	33	NA
Iraq	Basrah Light (Red Sea)	33.7	2

Country	Feedstock trade name	API	Sulphur (wt
			%)
Iraq	Kirkuk (Red Sea)	36.1	1.9
Iraq	Mishrif (Red Sea)	28	NA
Iraq	Bai Hasson (Red Sea)	34.1	2.4
Iraq	Basrah Medium (Red Sea)	31.1	2.6
Iraq	Basrah Heavy (Red Sea)	24.7	3.5
Iraq	Kirkuk Blend (Red Sea)	34	1.9
Iraq	N. Rumalia (Red Sea)	34.3	2
Iraq	Ratawi	23.5	4.1
Iraq	Basrah Light (Turkey)	33.7	2
Iraq	Kirkuk (Turkey)	36.1	1.9
Iraq	Mishrif (Turkey)	28	NA
Iraq	Bai Hasson (Turkey)	34.1	2.4
Iraq	Basrah Medium (Turkey)	31.1	2.6
Iraq	Basrah Heavy (Turkey)	24.7	3.5
Iraq	Kirkuk Blend (Turkey)	34	1.9
Iraq	N. Rumalia (Turkey)	34.3	2
Iraq	FAO Blend	27.7	3.6
Kazakhstan	Kumkol	42.5	0.07
Kazakhstan	CPC Blend	44.2 NA	0.54
Kuwait	Mina al Ahmadi (Kuwait Export)	31.4	2.5
Kuwait	Magwa (Lower Jurassic)	38	NA
Kuwait	Burgan (Wafra)	23.3	3.4

Country	Feedstock trade name	API	Sulphur (wt
			%)
Libya	Bu Attifel	43.6	0
Libya	Amna (high pour)	36.1	0.2
Libya	Brega	40.4	0.2
Libya	Sirtica	43.3	0.43
Libya	Zueitina	41.3	0.3
Libya	Bunker Hunt	37.6	0.2
Libya	El Hofra	42.3	0.3
Libya	Dahra	41	0.4
Libya	Sarir	38.3	0.2
Libya	Zueitina Condensate	65	0.1
Libya	El Sharara	42.1	0.07
Malaysia	Miri Light	36.3	0.1
Malaysia	Tembungo	37.5	NA
Malaysia	Labuan Blend	33.2	0.1
Malaysia	Tapis	44.3	0.1
Malaysia	Tembungo	37.4	0
Malaysia	Bintulu	26.5	0.1
Malaysia	Bekok	49	NA
Malaysia	Pulai	42.6	NA
Malaysia	Dulang	39	0.037
Mauritania	Chinguetti	28.2	0.51
Mexico	Isthmus	32.8	1.5
Mexico	Maya	22	3.3
Mexico	Olmeca	39	NA

Country	Feedstock trade name	API	Sulphur (wt
			%)
Mexico	Altamira	16	NA
Mexico	Topped Isthmus	26.1	1.72
Netherlands	Alba	19.59	NA
Neutral Zone	Eocene (Wafra)	18.6	4.6
Neutral Zone	Hout	32.8	1.9
Neutral Zone	Khafji	28.5	2.9
Neutral Zone	Burgan (Wafra)	23.3	3.4
Neutral Zone	Ratawi	23.5	4.1
Neutral Zone	Neutral Zone Mix	23.1	NA
Neutral Zone	Khafji Blend	23.4	3.8
Nigeria	Forcados Blend	29.7	0.3
Nigeria	Escravos	36.2	0.1
Nigeria	Brass River	40.9	0.1
Nigeria	Qua Iboe	35.8	0.1
Nigeria	Bonny Medium	25.2	0.2
Nigeria	Pennington	36.6	0.1
Nigeria	Bomu	33	0.2
Nigeria	Bonny Light	36.7	0.1
Nigeria	Brass Blend	40.9	0.1
Nigeria	Gilli Gilli	47.3	NA
Nigeria	Adanga	35.1	NA
Nigeria	Iyak-3	36	NA
Nigeria	Antan	35.2	NA
Nigeria	OSO	47	0.06

Country	Feedstock trade name	API	Sulphur (wt
			%)
Nigeria	Ukpokiti	42.3	0.01
Nigeria	Yoho	39.6	NA
Nigeria	Okwori	36.9	NA
Nigeria	Bonga	28.1	NA
Nigeria	ERHA	31.7	0.21
Nigeria	Amenam Blend	39	0.09
Nigeria	Akpo	45.17	0.06
Nigeria	EA	38	NA
Nigeria	Agbami	47.2	0.044
Norway	Ekofisk	43.4	0.2
Norway	Tor	42	0.1
Norway	Statfjord	38.4	0.3
Norway	Heidrun	29	NA
Norway	Norwegian Forties	37.1	NA
Norway	Gullfaks	28.6	0.4
Norway	Oseberg	32.5	0.2
Norway	Norne	33.1	0.19
Norway	Troll	28.3	0.31
Norway	Draugen	39.6	NA
Norway	Sleipner Condensate	62	0.02
Oman	Oman Export	36.3	0.8
Papua New Guinea	Kutubu	44	0.04
Peru	Loreto	34	0.3

Country	Feedstock trade name	API	Sulphur (wt
			%)
Peru	Talara	32.7	0.1
Peru	High Cold Test	37.5	NA
Peru	Bayovar	22.6	NA
Peru	Low Cold Test	34.3	NA
Peru	Carmen Central-5	20.7	NA
Peru	Shiviyacu-23	20.8	NA
Peru	Mayna	25.7	NA
Philippines	Nido	26.5	NA
Philippines	Philippines Miscellaneous	NA	NA
Qatar	Dukhan	41.7	1.3
Qatar	Qatar Marine	35.3	1.6
Qatar	Qatar Land	41.4	NA
Ras Al Khaimah	Rak Condensate	54.1	NA
Ras Al Khaimah	RasAlKhaimahMiscellaneous	NA	NA
Russia	Urals	31	2
Russia	Russian Export Blend	32.5	1.4
Russia	M100	17.6	2.02
Russia	M100 Heavy	16.67	2.09
Russia	Siberian Light	37.8	0.4
Russia	E4 (Gravenshon)	19.84	1.95
Russia	E4 Heavy	18	2.35
Russia	Purovsky Condensate	64.1	0.01
Russia	Sokol	39.7	0.18
Saudi Arabia	Light (Pers. Gulf)	33.4	1.8

Country	Feedstock trade name	API	Sulphur (wt
			%)
Saudi Arabia	Heavy (Pers. Gulf) (Safaniya)	27.9	2.8
Saudi Arabia	Medium (Pers. Gulf)	30.8	2.4
	(Khursaniyah)		
Saudi Arabia	Extra Light (Pers. Gulf) (Berri)	37.8	1.1
Saudi Arabia	Light (Yanbu)	33.4	1.2
Saudi Arabia	Heavy (Yanbu)	27.9	2.8
Saudi Arabia	Medium (Yanbu)	30.8	2.4
Saudi Arabia	Berri (Yanbu)	37.8	1.1
Saudi Arabia	Medium (Zuluf/Marjan)	31.1	2.5
Sharjah	Mubarek. Sharjah	37	0.6
Sharjah	Sharjah Condensate	49.7	0.1
Singapore	Rantau	50.5	0.1
Spain	Amposta Marina North	37	NA
Spain	Casablanca	34	NA
Spain	El Dorado	26.6	NA
Syria	Syrian Straight	15	NA
Syria	Thayyem	35	NA
Syria	Omar Blend	38	NA
Syria	Omar	36.5	0.1
Syria	Syrian Light	36	0.6
Syria	Souedie	24.9	3.8
Thailand	Erawan Condensate	54.1	NA
Thailand	Sirikit	41	NA
Thailand	Nang Nuan	30	NA

Country	Feedstock trade name	API Sulphur (
			%)		
Thailand	Bualuang	27 NA			
Thailand	Benchamas	42.4	0.12		
Trinidad and	Galeota Mix	32.8	0.3		
Tobago					
Trinidad and	Trintopec	24.8	NA		
Tobago					
Trinidad and	Land/Trinmar	23.4	1.2		
Tobago					
Trinidad and	Calypso Miscellaneous	30.84	0.59		
Tobago					
Tunisia	Zarzaitine	0.1			
Tunisia	Ashtart	29 1			
Tunisia	El Borma	0.1			
Tunisia	Ezzaouia-2	NA			
Turkey	Turkish Miscellaneous	NA			
Ukraine	Ukraine Miscellaneous	NA	NA		
United Kingdom	Auk	37.2	0.5		
United Kingdom	Beatrice	38.7	0.05		
United Kingdom	Brae	33.6	0.7		
United Kingdom	Buchan	33.7	0.8		
United Kingdom	Claymore	30.5	1.6		
United Kingdom	S.V. (Brent)	36.7	0.3		
United Kingdom	Tartan	41.7	0.6		
United Kingdom	Tern	35	0.7		
United Kingdom	Magnus	39.3	0.3		
United Kingdom	Dunlin	34.9	0.4		

EN

Country	Feedstock trade name	API	PI Sulphur (wt				
			%)				
United Kingdom	Fulmar	40	0.3				
United Kingdom	Hutton	30.5	0.7				
United Kingdom	N.W. Hutton	36.2	0.3				
United Kingdom	Maureen	35.5	0.6				
United Kingdom	Murchison	38.8	0.3				
United Kingdom	Ninian Blend	35.6	0.4				
United Kingdom	Montrose	40.1	0.2				
United Kingdom	Beryl	36.5	0.4				
United Kingdom	Piper	35.6	0.9				
United Kingdom	Forties	36.6	0.3				
United Kingdom	Brent Blend	38	0.4				
United Kingdom	Flotta	35.7	1.1				
United Kingdom	Thistle	37	0.3				
United Kingdom	S.V. (Ninian)	38	0.3				
United Kingdom	Argyle	38.6	0.2				
United Kingdom	Heather	33.8	0.7				
United Kingdom	South Birch	38.6	NA				
United Kingdom	Wytch Farm	41.5	NA				
United Kingdom	Cormorant. North	34.9	0.7				
United Kingdom	Cormorant. South (Cormorant "A")	35.7	0.6				
United Kingdom	Alba	19.2	NA				
United Kingdom	Foinhaven	26.3	0.38				
United Kingdom	Schiehallion	25.8	NA				
United Kingdom	Captain	19.1	0.7				

Country	Feedstock trade name	API	Sulphur (wt			
			%)			
United Kingdom	Harding	20.7	0.59			
US Alaska	ANS	NA	NA			
US Colorado	Niobrara	NA	NA			
US New Mexico	Four Corners	NA	NA			
US North Dakota	Bakken	NA	NA			
US North Dakota	North Dakota Sweet	NA	NA			
US Texas	WTI	NA	NA			
US Texas	Eagle Ford	NA	NA			
US Utah	Covenant	NA	NA			
US Federal OCS	Beta	NA	NA			
US Federal OCS	Carpinteria	NA	NA			
US Federal OCS	Dos Cuadras	NA	NA			
US Federal OCS	Hondo	NA	NA			
US Federal OCS	Hueneme	NA	NA			
US Federal OCS	Pescado	NA	NA			
US Federal OCS	Point Arguello	NA	NA			
US Federal OCS	Point Pedernales	NA	NA			
US Federal OCS	Sacate	NA	NA			
US Federal OCS	Santa Clara	NA	NA			
US Federal OCS	Sockeye	NA	NA			
Uzbekistan	Uzbekistan Miscellaneous	NA	NA			
Venezuela	Jobo (Monagas)	12.6	2			
Venezuela	Lama Lamar	36.7	1			
Venezuela	Mariago	27	1.5			

Country	Feedstock trade name	API	Sulphur (wt			
			%)			
Venezuela	Ruiz	32.4	1.3			
Venezuela	Tucipido	36	0.3			
Venezuela	Venez Lot 17	36.3	0.9			
Venezuela	Mara 16/18	16.5	3.5			
Venezuela	Tia Juana Light	32.1	1.1			
Venezuela	Tia Juana Med 26	24.8	1.6			
Venezuela	Officina	35.1	0.7			
Venezuela	Bachaquero	16.8	2.4			
Venezuela	Cento Lago	36.9	1.1			
Venezuela	Lagunillas	17.8	2.2			
Venezuela	La Rosa Medium	25.3	1.7			
Venezuela	San Joaquin	42	0.2			
Venezuela	Lagotreco	29.5	1.3			
Venezuela	Lagocinco	36	1.1			
Venezuela	Boscan	10.1	5.5			
Venezuela	Leona	24.1 1.5				
Venezuela	Barinas	26.2 1.8				
Venezuela	Sylvestre	28.4	1			
Venezuela	Mesa	29.2	1.2			
Venezuela	Ceuta	31.8	1.2			
Venezuela	Lago Medio	31.5	1.2			
Venezuela	Tigre	24.5	NA			
Venezuela	Anaco Wax	41.5 0.2				
Venezuela	Santa Rosa	49 0.1				

Country	Feedstock trade name	API	Sulphur (wt			
			%)			
Venezuela	Bombai	19.6	1.6			
Venezuela	Aguasay	41.1	0.3			
Venezuela	Anaco	43.4	0.1			
Venezuela	BCF-Bach/Lag17	16.8	2.4			
Venezuela	BCF-Bach/Lag21	20.4	2.1			
Venezuela	BCF-21.9	21.9	NA			
Venezuela	BCF-24	23.5	1.9			
Venezuela	BCF-31	31	1.2			
Venezuela	BCF Blend	34	1			
Venezuela	Bolival Coast	23.5	1.8			
Venezuela	Ceuta/Bach 18	18.5	2.3			
Venezuela	Corridor Block	26.9	1.6			
Venezuela	Cretaceous	42	0.4			
Venezuela	Guanipa	30	0.7			
Venezuela	Lago Mix Med.	23.4	1.9			
Venezuela	Larosa/Lagun	23.8	1.8			
Venezuela	Menemoto	19.3	2.2			
Venezuela	Cabimas	20.8	1.8			
Venezuela	BCF-23	23 1.9				
Venezuela	Oficina/Mesa	32.2	2 0.9			
Venezuela	Pilon	13.8	2			
Venezuela	Recon (Venez)	34	NA			
Venezuela	102 Tj (25)	25	25 1.6			
Venezuela	Tjl Cretaceous	39 0.6				

Country	Feedstock trade name	API	Sulphur (wt			
			%)			
Venezuela	Tia Juana Pesado (Heavy)	12.1	2.7			
Venezuela	Mesa-Recon	28.4	1.3			
Venezuela	Oritupano	19	2			
Venezuela	Hombre Pintado	29.7	0.3			
Venezuela	Merey	17.4	2.2			
Venezuela	Lago Light	41.2	0.4			
Venezuela	Laguna	11.2	0.3			
Venezuela	Bach/Cueta Mix	24	1.2			
Venezuela	Bachaquero 13	13	2.7			
Venezuela	Ceuta – 28	28	1.6			
Venezuela	Temblador	23.1	0.8			
Venezuela	Lagomar	32	1.2			
Venezuela	Taparito	17	NA			
Venezuela	BCF-Heavy	16.7	NA			
Venezuela	BCF-Medium	22	NA			
Venezuela	Caripito Blend	17.8	NA			
Venezuela	Laguna/Ceuta Mix	18.1	NA			
Venezuela	Morichal	10.6	NA			
Venezuela	Pedenales	20.1	NA			
Venezuela	Quiriquire	16.3	NA			
Venezuela	Tucupita	17	NA			
Venezuela	Furrial-2 (E. Venezuela)	27	NA			
Venezuela	Curazao Blend	18	NA			
Venezuela	Santa Barbara	36.5	NA			

Country	Feedstock trade name	API	Sulphur (wt				
			%)				
Venezuela	Cerro Negro	15	NA				
Venezuela	BCF22	21.1	2.11				
Venezuela	Hamaca	26	1.55				
Venezuela	Zuata 10	15	NA				
Venezuela	Zuata 20	25	NA				
Venezuela	Zuata 30	35	NA				
Venezuela	Monogas	15.9	3.3				
Venezuela	Corocoro	24	NA				
Venezuela	Petrozuata	19.5	2.69				
Venezuela	Morichal 16	16	NA				
Venezuela	Guafita	28.6	0.73				
Vietnam	Bach Ho (White Tiger)	38.6	0				
Vietnam	Dai Hung (Big Bear)	36.9	0.1				
Vietnam	Rang Dong	37.7	0.5				
Vietnam	Ruby	35.6	0.08				
Vietnam	Su Tu Den (Black Lion)	36.8	0.05				
Yemen	North Yemeni Blend	40.5	NA				
Yemen	Alif	40.4	0.1				
Yemen	Maarib Lt.	49	0.2				
Yemen	Masila Blend	30-31	0.6				
Yemen	Shabwa Blend	34.6	0.6				
Any	Oil shale	NA	NA				
Any	Shale oil	NA	NA				
Any	Natural Gas: piped from source	NA	NA				

Country	Feedstock trade name	API	Sulphur (wt %)
Any	Natural Gas: from LNG	NA	NA
Any	Shale gas: piped from source	NA	NA
Any	Coal	NA	NA

<u>Annex II</u>

Calculation of the baseline greenhouse gas intensity of fossil fuels

Methodology

=

(a) The baseline greenhouse gas intensity is calculated based on Union average fossil fuel consumption of petrol, diesel, gasoil, LPG and CNG, where:

Baseline greenhouse gas intensity calculation

$$\frac{\sum_{x} (GHGi_{x} \times MJ_{x})}{\sum_{x} MJ_{x}}$$

Where:

x represents the different fuels and energy carriers falling within the scope of the Directive and as defined in the table below

 $GHGi_x$ is the unit greenhouse gas intensity of the annual supply sold on the market of fuel x or energy carrier falling within the scope of this Directive expressed in gCO_2eq/MJ . The values for fossil fuels presented in Annex I Part 2 point (5) are used.

 MJ_x is the total energy supplied and converted from reported volumes of fuel x expressed in Mega Joules.

(b) Consumption data

The consumption data used for calculation of the value is as follows:

Fuel	Energy Consumption (MJ)	Source
diesel	7 894 969 x 10 ⁶	
non-road gasoil	240 763 x 10 ⁶	2010 Member States reporting to
petrol	3 844 356 x 10 ⁶	UNFCCC
LPG	217 563 x 10 ⁶	
CNG	51 037 x 10 ⁶	

Greenhouse gas intensity

The greenhouse gas intensity for 2010 shall be: 94.1 gCO_2eq/MJ

Annex III

Member State reporting to the Commission

- Member States report by <u>31 December</u> each year the data listed in point 3. Data must be reported for all fuel and energy placed on the market in the Member State. Where multiple biofuels are blended with fossil fuels, the data for each biofuel must be provided.
- The data listed in point 3 is reported separately for fuel or energy placed on the market by suppliers within a Member State (including joint suppliers operating in a single Member State) [...].
- 3. For each fuel, Member States report the following data to the Commission aggregated according to point 2 and as defined in Annex I:
 - (a) Fuel or energy type;
 - (b) Volume or quantity of electric energy;
 - (c) Greenhouse gas intensity;
 - (d) Upstream emission reductions;
 - (e) Origin;
 - (f) Place of purchase.

Annex IV

Template for reporting information for consistency of the reported data

FUEL - SINGLE SUPPLIERS

Entry	Joint Reporting (YES/NO)	Country	Supplier ¹	Fuel type ⁷	Fuel CN code ⁷	Qua by litres	ntity ² by energy	Average GHG intensity	Upstream Emission Reduction⁵	Reduction on 2010 average
1		CN code	GHG intensity⁴	Feedstock	CN code	GHG intensity ⁴	sustainable (YES/NO)			
	Component F.1 (Fossil Fuel Component)		sil Fuel	Compo	nent B.1 (I	Biofuel Com	onent)			
	Compor	tent F.n (Fos Component)	sil Fuel	Compo	nent B.m (i	Biofuei Com	ponent)			
Entry	Joint Reporting	Country	Supplier ¹	Fuel type ⁷	Fuel CN	Qua	ntity ²	Average GHG	Upstream Emission	Reduction on 2010
	(YES/NO)				coue	by litres	by energy	intensity	Reduction ⁵	average
к	<u>k</u>	CN code ²	GHG intensity ⁴	Feedstock	CN code ²	GHG Intensity ⁴	sustainable (YES/NO)			
	Compor	ent F.1 (Fos Component)	sil Fuel	Compo	nent B.1 (I	Biofuel Com	onent)			
	Compor	ent E n (Fos Component)	şil Fuel	Compo	nent B.m (I	Biofuel Com	ponent)			

FUEL - JOINT SUPPLIERS

-

Entry	Joint Reporting (YES/NO) YES	Country	Supplier ¹	Fuel type ⁷	Fuel CN code⁷	Qua	ntity ²	Average GHG intensity	Upstream Emission Reduction ⁵	Reduction on 2010 average
	VEO									
	YES									
		CN code	GHG intensity ⁴	- Feedstock	CN code	GHG intensity ⁴	sustainable (YES/NO)			
	Compor	nent F.1 (Fos Component)	sil Fuel	Compo	onent B.1 (i	Biofuei Comp	ionent)			
	Compor	<u>nent F.n (Fos</u> Component)	sil Fuel	Compo	nent B.m (Biofuei Com	ponent)			
Entry	Joint Reporting	Country	Supplier ¹	Fuel type ⁷	Fuel CN	Qua	ntity²	Average GHG	Upstream Emission	Reduction on 2010
	(YES/NO)				code.	by litres	by energy	intensity	Reduction ⁵	average
X	YES									
	TES				1					
		Subtotal CN code ²	GHG	Feedstock	CN code ²	GHG	sustainable			
	Commo		intensity			Intensity	(TES/NO)			
		Component)		Compo	onent B.1 (I	Biofuel Comp	onent)			
	Compor	ent F.n (For Component)	sil Fuel	Compo	nent B.m (Biofuel Com	ponent)			
		1	1		I	1		l		

ELECTRICITY

Joint Reporting		Supplier ¹	Energy type	Quantity ⁶	GHG	Reduction on 2010
(YES/NO)	Country			by energy	interiory	average
NO						

Joint Supplier Information										
	Country	Supplier ¹	Energy type	Quantity ⁶ by energy	GHG intensity	Reduction on 2010				
YES										
YES										
	Subtotal									

ORIGIN – SINGLE SUPPLIERS⁸

Entry 1	compon	ent F.1	Entry 1	component F.n		Entry k	component F.1		Entry k	compone	ent F.n
Feedstock Trade Name	API density ³	Tonnes	Feedstock Trade Name	API density ³	Tonnes	Feedstock Trade Name	API density ³	Tonnes	Feedstock Trade Name	API density ³	Tonnes
-											
-											
Entry 1	compon	ent B.1	Entry 1	compone	nt B.m	Entry k	compon	ent B.1	Entry k	compone	nt B.m
Pathway	API density ³	Tonnes	Pathway	API density ³	Tonnes	Pathway	API density ³	Tonnes	Pathway	API density ³	Tonnes
-											
		-									

ORIGIN – JOINT SUPPLIERS⁸

Entry I	compon	ent F.1	Entry I	component F.n		Entry X	component F.1		Entry X	compone	ent F.n
Eagdstock			Eagdstock	compone		Eadstock			Eadstock	compone	
Tuel		T	Teeuslock		T	Turk		T	Teeuslock		T
Trade	API density -	Tonnes	Trade	API density -	Tonnes	Trade	API density -	Tonnes	Trade	API density -	Tonnes
Name			Name			Name			Name		
	1		1	1		1					
	1		ł								
			l		-						
Entry	compon	ont P 1	Entry		nt P m	Entry V	compon	ont P 1	Entry V		nt P m
Entry I	compon	ent B.1	Entry I	compone	nt B.m	Entry X	compon	ent B.1	Entry X	compone	nt B.m
Entry I Bio	compon	ent B.1 Tonnes	Entry I Bio	compone	nt B.m Tonnes	Entry X Bio	compon	ent B.1 Tonnes	Entry X Bio	compone	nt B.m Tonnes
Entry I Bio Pathway	compon API density ³	ent B.1 Tonnes	Entry I Bio Pathway	compone API density ³	nt B.m Tonnes	Entry X Bio Pathway	compon API density ³	ent B.1 Tonnes	Entry X Bio Pathway	compone API density ³	nt B.m Tonnes
Entry I Bio Pathway	compon API density ³	ent B.1 Tonnes	Entry I Bio Pathway	Compone API density ³	nt B.m Tonnes	Entry X Bio Pathway	compon API density ³	ent B.1 Tonnes	Entry X Bio Pathway	compone API density ³	nt B.m Tonnes
Entry I Bio Pathway	Compon API density ³	ent B.1 Tonnes	Entry I Bio Pathway	Compone API density ³	nt B.m Tonnes	Entry X Bio Pathway	Compon API density ³	ent B.1 Tonnes	Entry X Bio Pathway	Compone API density ³	nt B.m Tonnes
Entry I Bio Pathway	compon API density ³	ent B.1 Tonnes	Entry I Bio Pathway	Compone API density ³	nt B.m Tonnes	Entry X Bio Pathway	Compon API density ³	ent B.1 Tonnes	Entry X Bio Pathway	Compone API density ³	nt B.m Tonnes
Entry I Bio Pathway	compon API density ³	ent B.1 Tonnes	Entry I Bio Pathway	Compone API density ³	nt B.m Tonnes	Entry X Bio Pathway	Compon API density ³	ent B.1 Tonnes	Entry X Bio Pathway	Compone API density ³	nt B.m Tonnes
Entry I Bio Pathway	Compon API density ³	ent B.1 Tonnes	Entry I Bio Pathway	Compone API density ³	nt B.m Tonnes	Entry X Bio Pathway	Compon API density ³	ent B.1 Tonnes	Entry X Bio Pathway	compone API density ³	nt B.m Tonnes
Entry I Bio Pathway	Compon API density ³	ent B.1 Tonnes	Entry I Bio Pathway	Compone API density ³	nt B.m Tonnes	Entry X Bio Pathway	Compon API density ³	ent B.1 Tonnes	Entry X Bio Pathway	compone API density ³	nt B.m Tonnes
Entry I Bio Pathway	Compon API density ³	ent B.1 Tonnes	Entry I Bio Pathway	Compone API density ³	nt B.m Tonnes	Entry X Bio Pathway	Compon API density ³	ent B.1 Tonnes	Entry X Bio Pathway	Compone API density ³	nt B.m Tonnes
Entry I Bio Pathway	Compon API density ³	ent B.1 Tonnes	Entry I Bio Pathway	Compone API density ³	nt B.m Tonnes	Entry X Bio Pathway	Compon API density ³	ent B.1 Tonnes	Entry X Bio Pathway	Compone API density ³	nt B.m Tonnes
Entry I Bio Pathway	Compon API density ³	ent B.1 Tonnes	Entry I Bio Pathway	compone API density ³	nt B.m Tonnes	Entry X Bio Pathway	Compon API density ³	ent B.1 Tonnes	Entry X Bio Pathway	Compone API density ³	nt B.m Tonnes
Entry I Bio Pathway	Compon API density ³	ent B.1 Tonnes	Entry I Bio Pathway	Compone API density ³	nt B.m Tonnes	Entry X Bio Pathway	Compon API density ³	ent B.1 Tonnes	Entry X Bio Pathway	Compone API density ³	nt B.m Tonnes
Entry I Bio Pathway	Compon API density ³	ent B.1 Tonnes	Entry I Bio Pathway	Compone API density ³	nt B.m Tonnes	Entry X Bio Pathway	Compon API density ³	ent B.1 Tonnes	Entry X Bio Pathway	Compone API density ³	nt B.m Tonnes
Entry I Bio Pathway	Compon API density ³	ent B.1 Tonnes	Entry I Bio Pathway	Compone API density ³	nt B.m Tonnes	Entry X Bio Pathway	Compon API density ³	ent B.1 Tonnes	Entry X Bio Pathway	Compone API density ³	nt B.m Tonnes
Entry I Bio Pathway	Compon API density ³	ent B.1 Tonnes	Entry I Bio Pathway	Compone API density ³	nt B.m Tonnes	Entry X Bio Pathway	Compon API density ³	ent B.1 Tonnes	Entry X Bio Pathway	Compone API density ³	nt B.m Tonnes
Entry I Bio Pathway	Compon API density ³	ent B.1 Tonnes	Entry I Bio Pathway	Compone API density ³	nt B.m Tonnes	Entry X Bio Pathway	Compon API density ³	ent B.1 Tonnes	Entry X Bio Pathway	Compone API density ³	nt B.m Tonnes
Entry I Bio Pathway	Compon API density ³	ent B.1 Tonnes	Entry I Bio Pathway	Compone API density ³	nt B.m Tonnes	Entry X Bio Pathway	Compon API density ³	ent B.1 Tonnes	Entry X Bio Pathway	Compone API density ³	nt B.m Tonnes
Entry I Bio Pathway	Compon API density ³	ent B.1 Tonnes	Entry I Bio Pathway	compone API density ³	nt B.m Tonnes	Entry X Bio Pathway	Compon API density ³	ent B.1 Tonnes	Entry X Bio Pathway	Compone API density ³	nt B.m Tonnes
Entry I Bio Pathway	Compon API density ³	ent B.1 Tonnes	Entry I Bio Pathway	Compone API density ³	nt B.m Tonnes	Entry X Bio Pathway	Compon API density ³	ent B.1 Tonnes	Entry X Bio Pathway	Compone API density ³	nt B.m Tonnes
Entry I Bio Pathway	Compon API density ³	ent B.1 Tonnes	Entry I Bio Pathway	Compone API density ³	nt B.m Tonnes	Entry X Bio Pathway	Compon API density ³	ent B.1 Tonnes	Entry X Bio Pathway	Compone API density ³	nt B.m Tonnes
Entry I Bio Pathway	Compon API density ³	ent B.1 Tonnes	Entry I Bio Pathway	Compone API density ³	nt B.m Tonnes	Entry X Bio Pathway	Compon API density ³	ent B.1 Tonnes	Entry X Bio Pathway	Compone API density ³	nt B.m Tonnes
Entry I Bio Pathway	Compon API density ³	ent B.1 Tonnes	Entry I Bio Pathway	Compone API density ³	nt B.m Tonnes	Entry X Bio Pathway	Compon API density ³	ent B.1 Tonnes	Entry X Bio Pathway	Compone API density ³	nt B.m Tonnes
Entry I Bio Pathway	Compon API density ³	ent B.1 Tonnes	Entry I Bio Pathway	Compone API density ³	nt B.m Tonnes	Entry X Bio Pathway	Compon API density ³	ent B.1 Tonnes	Entry X Bio Pathway	Compone API density ³	nt B.m Tonnes
Entry I Bio Pathway	Compon API density ³	ent B.1 Tonnes	Entry I Bio Pathway	Compone API density ³	nt B.m Tonnes	Entry X Bio Pathway	Compon API density ³	ent B.1 Tonnes	Entry X Bio Pathway	Compone API density ³	nt B.m Tonnes
Entry I Bio Pathway	Compon API density ³	ent B.1 Tonnes	Entry I Bio Pathway	compone API density ³	nt B.m Tonnes	Entry X Bio Pathway	Compon API density ³	ent B.1 Tonnes	Entry X Bio Pathway	Compone API density ³	nt B.m Tonnes
Entry I Bio Pathway	Compon API density ³	ent B.1 Tonnes	Entry I Bio Pathway	Compone API density ³	nt B.m Tonnes	Entry X Bio Pathway	Compon API density ³	ent B.1 Tonnes	Entry X Bio Pathway	Compone API density ³	nt B.m Tonnes
Entry I Bio Pathway	Compon API density ³	ent B.1 Tonnes	Entry I Bio Pathway	compone API density ³	nt B.m Tonnes	Entry X Bio Pathway	Compon API density ³	ent B.1 Tonnes	Entry X Bio Pathway	Compone API density ³	nt B.m Tonnes
Entry I Bio Pathway	Compon API density ³	ent B.1 Tonnes	Entry I Bio Pathway	Compone API density ³	nt B.m Tonnes	Entry X Bio Pathway	Compon API density ³	ent B.1 Tonnes	Entry X Bio Pathway	Compone API density ³	nt B.m Tonnes

PLACE OF PURCHASE⁹

.

Entry	Componen	Refinery/ Processing Facility	Country										
1 <u>Linuy</u>	F.1	Names	country										
1	F.n												
1	B.1												
1	B.m												
k	F.1												
k	F.n												
k	B.1												
k	B.m												
I	F.1												
I	F.n												
I	B.1												
I	B.m												
Х	F.1												
X	F.n												
X	B.1												
Х	B.m												

TOTAL ENERGY REPORTED AND REDUCTION ACHIEVED PER MEMBER STATE

Volume (by energy) ¹⁰	GHG intensity	Reduction on 2010

FORMAT NOTES

Template for supplier reporting is identical to the template for Member State reporting.

Shaded cells do not have to be filled in.

- 1. Supplier identification is defined in Annex I Part 1 point 4(a);
- 2. Quantity of fuel is defined in Annex I Part 1 point 4(c);
- 3. API density is defined pursuant to testing method ASTM D287;
- 4. Greenhouse gas intensity is defined in Annex I Part 1 point 4(e);
- 5. Upstream emission reduction is defined in Annex I Part 1 point 4(d); reporting specifications are defined in Annex I Part 2 point (1)

- 6. Quantity of electricity is defined in Annex I Part 2 point (6);
- 7. Fuel types and corresponding CN codes are defined in Annex I Part 1 point 4(b);
- 8. Origin is defined in Annex I Part 2 point (2) and Annex I Part 2 point (4);
- 9. Place of Purchase is defined in Annex I Part 2 point (3) and Annex I Part 2 point (4);
- Total volume may exceed the total volume of actual fuel and electric energy consumed as this sum could include volumes from suppliers reporting jointly with suppliers from other Member States.